Effective cofactor complex purification using nanobeads


Drug target factor complex identification is necessary for evidence based drug discovery. Previous study showed that using small chemical immobilized magnetic nanobeads the chemical target factors were effectively purified and identified. Here we succeeded to purify the chemical target factor complex, so called cofactor(s). Arginine exhibits a variety of biological activities through a complex and highly regulated set of pathways that remain incompletely understood at both the whole-body and the cellular levels. The aim of this study is to develop and validate effective purification system for arginine target complex. New arginine target protein (arginine interacting factor 4, AIF4) was purified and identified. Using recombinant AIF4 protein and arginine-immobilized magnetic nanobeads, AIF4 cofactor, AIF4-BP1, were purified. Interaction of AIF4 and AIF4-BP1 was detected in arginine-dependent manner, suggesting arginine receptor complex formation. This nanobeads technology is more than 30-fold efficient purification efficient than general purification technology.

Share and Cite:

Umeda, M. , Uebi, T. , Maekawa, N. , Masaike, Y. , Handa, H. and Imai, T. (2013) Effective cofactor complex purification using nanobeads. Journal of Biosciences and Medicines, 1, 5-10. doi: 10.4236/jbm.2013.13002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., Yamaguchi, Y. and Handa, H. (2010) Identification of a primary target of thalidomide teratogenicity. Science, 327, 1345-1350. http://dx.doi.org/10.1126/science.1177319
[2] Maekawa, N., Hiramoto, M., Sakamoto, S., Azuma, M., Ito, T., Ikeda, M., Naitou, M., Acharya, H.P., Kobayashi, Y., Suematsu, M., Handa, H. and Imai, T. (2011) High-performance affinity purification for identification of 15-deoxy-12,14-PGJ2 interacting factors using magnetic nanobeads. Biomedical Chromatography, 25, 466-471. http://dx.doi.org/10.1002/bmc.1469
[3] Uebi, T., Umeda, M., Maekawa, N., Karasawa, S., Handa, H. and Imai, T. (2013). Prohibitins, novel vitamin K2 target factors in osteoblast. Journal of Bioscience and Medicine, in Press.
[4] Hiramoto, M., Maekawa, N., Kuge, T., Ayabe, F., Watanabe, A., Masaike, Y., Hatakeyama, M., Handa, H. and Imai, T. (2010) High-performance affinity chromatography method for identification of L-arginine interacting factors using magnetic nanobeads. Biomedical Chromatography, 24, 606-612. http://dx.doi.org/10.1002/bmc.1469
[5] Morris Jr., M.S. (2006) Arginine: beyond protein. The American Journal of Clinical Nutrition, 83, 508S-512S.
[6] Angele, M.K.K., Nitsch, S.M., Hatz, R.A., Angele, P., Hernandez-Richter, T., Wichmann, M.W., Chaudry, I.H. and Schildberg, F.W. (2002) L-Arginine: A unique amino acid for improving depressed wound immune function following hemorrhage. European Surgical Research, 34, 53-60. http://dx.doi.org/10.1159/000048888
[7] Fisker, S., Nielsen, S., Ebdrup, L., Bech, J.N., Christian- sen, J.S., Pedersen, E.B. and Jorgensen, J.O. (1999) The role of nitric oxide in L-arginine-stimulated growth hormone release. Journal of Endocrinological Investigation, 22, 89-93.
[8] Weinhaus, A.J., Poronnik, P., Tuch, B.E. and Cook, D.I. (1997) Mechanisms of arginine-induced increase in cytosolic calcium concentration in the beta-cell line NIT-1. Diabetologia, 40, 374-382. http://dx.doi.org/10.1007/s001250050690
[9] Schlaich, M.P., Parnell, M.M., Ahlers, B.A., Finch, S., Marshall, T., Zhan, W.Z. and Kaye, D.M. (2004) Impaired L-arginine transport and endothelial function in hypersensive and genetically predisposed normotensive subjects. Circulation, 110, 3680-3686. http://dx.doi.org/10.1161/01.CIR.0000149748.79945.52
[10] Tong, B.C. and Barbul, A. (2004) Cellular and physiological effects of arginine. Mini-Reviews in Medicinal Chemistry, 4, 823-832. http://dx.doi.org/10.2174/1389557043403305
[11] Nishio, K., Masaike, Y., Ikeda, M., Narimatsu, H., Goken, N., Tsubouchi, S., Hatakeyama, M., Sakamoto, S., Hanyu, N., Sandhu, A., Kawaguchi, H., Abe, M. and Handa, H. (2008) Development of novel magnetic nano-carriers for high-performance affinity purification. Colloids and Surfaces B: Biointerfaces, 64, 162-169. http://dx.doi.org/10.1016/j.colsurfb.2008.01.013
[12] Imai, T., Sumi, Y., Hatakeyama, M., Fujimoto, K., Kawaguchi, H., Yajima, H. and Handa, H. (1996) Selective isolation of DNA or RNA using single-stranded DNA affinity latex particles. Journal of Colloid and Interface Science, 177, 245-249. http://dx.doi.org/10.1006/jcis.1996.0027
[13] Shimizu, N., Sugimoto, K., Tang, J., Nishi, T., Sato, I., Hiramoto, M., Aizawa, S., Hatakeyama, M., Ohba, R., Hatori, H., Yoshikawa, T., Suzuki, F., Oomori, A., Tanaka, H., Kawaguchi, H., Watanabe, H. and Handa, H. (2000) High-performance affinity beads for identifying drug receptors. Nature Biotechnology, 18, 877-881. http://dx.doi.org/10.1038/78496
[14] Ohtsu, Y., Ohba, R., Imamura, Y., Kobayashi, M., Hatori, H., Zenkoh, T., Hatakeyama, M., Manabe, T., Hino, M., Yamaguchi, Y., Kataoka, K., Kawaguchi, H., Watanabe, H. and Handa, H. (2005) Selective ligand purification using high-performance affinity beads. Analytical Biochemistry, 338, 245-252. http://dx.doi.org/10.1038/78496
[15] Imai, T., Matsuda, K., Shimojima, T., Muramatsu, M., Handa, H. and Kato, S. (1997) ERC-55, a binding protein for the papilloma virus E6 oncoprotein, specifically interacts with vitamin D receptor among nuclear receptors. Biochemical and Biophysical Research Communications, 233, 765-769. http://dx.doi.org/10.1006/bbrc.1997.6531
[16] Arnold, S.M. and Kaufman, R.J. (2003) The noncatalytic portion of human UDP-glucose: Glycoprotein glucosyl-transferase I confers UDP-glucose binding and transferase function to the catalytic domain. The Journal of Biological Chemistry, 278, 43320-43328. http://dx.doi.org/10.1074/jbc.M305800200

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.