Garlic Clove Catalyzed Biginelli Reaction in Water at Ambient Temperature

Abstract

A simple, green and highly efficient procedure for the Biginelli condensation reaction of aldehydes, β-ketoesters, urea or thiourea catalyzed by crushed garlic clove at ambient temperature is reported.

Share and Cite:

H. Abd-Elnabi, A. Mohamed Abdel Hameed, R. Ahmed Mekheimer, R. R. Awed and K. Usef Sadek, "Garlic Clove Catalyzed Biginelli Reaction in Water at Ambient Temperature," Green and Sustainable Chemistry, Vol. 3 No. 4, 2013, pp. 141-145. doi: 10.4236/gsc.2013.34017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. R. Mirzaei, H. Azamat and H. Namazi, “Investigation the Reactivity of Positions N-3, C-5 and C6-Methyl Group in Biginelli Type Compounds and Synthesis of New Dihydropyrimidine Derivatives,” Journal of Het- erocyclic Chemistry, Vol. 38, No. 5, 2001, pp. 1051-1054.
[2] M. R. Shaaban, T. S. Saleh, A. S. Mayhoub, A. Mansour and A. M. Farag, “Synthesis and Analgesic/Anti-Inflammatory Evaluation of Fused Heterocyclic Ring Systems Incorporating Phenylsulfonyl Moiety,” Bioorganic & Medicinal Chemistry, Vol. 16, No. 12, 2008, pp. 6344-6352.
[3] H. Cho, M. Ueda, K. Shima, A. Mizuno, M. Hayashimatsu, Y. Ohnaka, Y. Takeuchi, M. Hamaguchi, K. Aisaka and T. Hidaka, “Dihydropyrimidines: Novel Calcium Antagonists with Potent and Long-Lasting Vasodilative and Anti-Hypertensive Activity,” Journal of Medicinal Chemistry, Vol. 32, No. 10, 1989, pp. 2399-2406.
http://dx.doi.org/10.1021/jm00130a029
[4] G. C. Rovnyak, S. D. Kimball, B. Beyer, G.Cucinotta, J. D. DiMarco, J. Gougoutas, A. Hedberg, M. Malley, J. P. McCarthy, R. Zhang and S. J. Moreland, “Calcium Entry Blockers and Activators: Conformational and Structural Determinants of Dihydro-Pyrimidine Calcium Channel Modulators,” Journal of Medicinal Chemistry, Vol. 38, No. 1, 1995, pp. 119-129.
http://dx.doi.org/10.1021/jm00001a017
[5] M. C. Van Zandt, M. L. Jones, D. E. Gunn, L. S. Geraci, J. H. Jones, D. R. Sawicki, J. Sredy, J. L. Jacot, A. Th. Di-Cioccio, T. Petrova, A. Mitschler and A. D. Podjarny, “Discovery of 3-[(4,5,7-Triflurobenzothiazol-2-yl)Methyl] Indole-N-Acetic Acid (Lidorestat) and Congeners as Highly Potent and Selective Inhibitors of Aldose Reeducates for Treatment of Chronic Diabetic Complications,” Journal of Medicinal Chemistry, Vol. 48, No. 9, 2005, pp. 3141-3152.
[6] T. Tsuruo, H. Iida, M. Nojiri, S. Tsukagoshi and Y. Sakurai, “Circumvention of Vincristine and Adriamycin Resistance in Vitro and in Vivo by Calcium Blockers,” Cancer Research, Vol. 43, No. 6, 1983, pp. 2905-2910.
[7] B. B. Snider and Z. Shi, “Biometric Synthesis of (.+-.) Crambines A, B, C1 and C2. Revision of the Structure of Carbmines B and C1),” The Journal of Organic Chemistry, Vol. 58, No. 15, 1993, pp. 3828-3839.
[8] G. C. Rovnyak, S. D. Kimball, B. Beyer, G. Cucinotta, J. D. DiMarco, J. Gougoutas, A. Hedberg, M. Malley, J. P. McCarthy, R. Zhang and S. Moreland, “Calcium Entry Blockers and Activators: Conformational and Structural Determinants of Dihydro-Pyrimidine Calcium Channel Modulators,” Journal of Medicinal Chemistry, Vol. 38, No. 1, 1995, pp. 119-129.
http://dx.doi.org/10.1021/jm00001a017
[9] A. Dondoni, A. Massi and S. Sabbatini, “Improved Synthesis and Preparative Scale Resolution for Racemic Monastrol,” Tetrahedron Letters, Vol. 43, No. 34, 2002, pp. 5913-5916.
[10] R. Laville, O. P. Thomas, F. Berrué, D. Marquez, J. Vacelet and Ph. Amade, “Bioactive Guanidine Alkaloids from Two Caribbean Marine Sponges,” Journal of Natural Products, Vol. 72, No. 9, 2009, pp.1589-1594.
http://dx.doi.org/10.1021/np900244g
[11] P. Biginelli, “Derivati Aldeiduredici Degli Eteri Acetile Dossal-Acetico,” Gazzetta Chimica Italiana, Vol. 23, 1893, pp. 360-416.
[12] A. S. Paraskar, G. K. Dewkar and A. Sudalai, “Cu(OTf)2 a Reusable Catalyst for High-Yield Synthesis of 3,4-Di- hydropyrimidin-2(1H)-Ones,” Tetrahedron Letters, Vol. 44, No. 16, 2003, pp. 3305-3308.
http://dx.doi.org/10.1016/S0040-4039(03)00619-1
[13] G. Sabitha, K. B. Reddy, J. S. Yadav, D. Shailaja and K. S. Sivudu, “Ceria/Vinyl pyridine Polymer Nanocomposite: An Ecofriendly Catalyst for the Synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Tetrahedron Letters, Vol. 46, No. 47, 2005, pp. 8221-8222.
http://dx.doi.org/10.1016/j.tetlet.2005.09.100
[14] J. Azizian, A. A. Mohammadi, A. R. Karimi and M. R. Mohammadizadeh, “KAl(SO4)·12H2O Supported on Silica Gel as a Novel Heterogeneous System Catalyzed Biginelli Reaction: One-Pot Synthesis of Dihydropyrimidinones Under Solvent-Free Conditions,” Applied Ca- talysis A: General, Vol. 300, No. 1, 2006, pp. 85-88.
[15] K. U. Sadek, F. Al-Qalaf, M. M. Abdelkhalik and M. H. Elnagdi, “Cerium (IV) Ammonium Nitrate as an Efficient Lewis Acid for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and their Corresponding 2(1H)-thiones,” Journal of Heterocyclic Chemistry, Vol. 47, No. 2, 2010, pp. 284-286. http://dx.doi.org/10.1002/jhet.259
[16] N. Shapiro and A. Vigalok, “Highly Efficient Organic Reactions ‘on Water’ and ‘in Water’ and Both,” Angewandte Chemie, Vol. 120, No. 15, 2008, pp. 2891-2894.
doi: 10.1002/ange. 200705347.
[17] S. D. Salim and K. G. Akamanchi, “Sulfated Tungstate: An Alternative, Eco-Friendly Catalyst for Biginelli Reaction,” Catalysis Communications, Vol. 12, No. 12, 2011, pp. 1153-1156. doi: org/10.1016/j.catcom.2011.02.018.
[18] S. Chitra and K. Pandiarajan, “Calcium Fluoride: An Efficient and Reusable Catalyst for the Synthesis of 3,4- Dihydropyrimidin-2(1H)-ones and Their Corresponding 2-(1H)-thiones: An Improved High Yielding Protocol for Biginelli Reaction,” Tetrahedron Letters, Vol. 50, No. 19, 2009, pp. 2222-2224.
[19] P. G. Mandhane, R. S. Joshi, D. R. Nagargoje and C. H. Gill, “An Efficient Synthesis of 3,4-Dihydropyrimidin- 2(1H)-ones Catalyzed by Thiamine Hydrochloride in Water Under Ultrasound Irradiation,” Tetrahedron Letters, Vol. 51, No. 23, 2010, pp. 3138-3140.
[20] K. K. Pasunooti, H. Chai, C. N. Jensen, B. K. Gorityala, S. Wang and X.-W. Liu, “A Microwave-Assisted, Copper Catalyzed three-component Synthesis of Dihydro-Pyrimidinones under Mild Conditions,” Tetrahedron Letters, Vol. 52, No. 1, 2011, pp. 80-84.
[21] S. Patil, S. D. Jodhav and M. B. Deshmukh, “Natural Acid Catalyzed Multi-Component Reactions as a Green Approach,” Archives of Applied Science Research, Vol. 3, No. 1, 2011, p. 203. www.scholarresearchlibirary.com
[22] A. Debache, M. Amimour, A. Belfaitah, S. Rhouati and B. Carboni, “A One-Pot Biginelli Synthesis of 3,4-Dihy- dropyrimidin-2(1H)-Ones/Thiones Catalyzed by Triphenyl-phosphine as Lewis Base,” Tetrahedron Letters, Vol. 49, No. 42, 2008, pp. 6119-6121.
[23] Z.-L. Shen, X.-P. Xu and S.-J. Ji, “Bronsted Base-Catalyzed One-Pot Three Component Biginelli Type Reaction: An Efficient Synthesis of 4,5,6-Triaryl-3,4-Dihydropyrimidin-2(1H)-one and Mechanistic Study,” The Journal of Organic Chemistry, Vol. 75, No. 4, 2010, pp. 1162-1167.
http://dx.doi.org/10.1021/jo902394y
[24] D. Ding and C.-G. Zhao, “Primary Amine Catalyzed Biginelli Reaction for the Enantioselective Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones,” European Journal of Organic Chemistry, Vol. 2010, No. 20, 2010, pp. 3802- 3805. http://dx.doi.org/10.1002/ejoc.201000448
[25] F. Tamaddon, Z. Razmi and A. A. Jafari, “Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and 1,4-Dihydropyridines Using Ammonium Carbonate in Water,” Tetrahe- dron Letters, Vol. 51, No. 8, 2010, pp. 1187-1189.
[26] R. A. Mekheimer, A. M. Abdel Hameed and K. U. Sadek, “Solar Thermochemical Reactions: Four-Component Synthesis of Polyhydroquinoline Derivatives Induced by Solar Thermal Energy,” Green Chemistry, Vol. 10, No. 5, 2008, pp. 592-593.
[27] K. U. Sadek, R. A. Mekheimer, A. M. Abdel Hameed, F. Elnahas and M. H. Elnagdi, “Green and Highly Efficient Synthesis of 2-Arylbenzothiazoles Using Glycerol without Catalyst at Ambient Temperature,” Molecules, Vol. 17, No. 5, 2012, pp. 6011-6019.
http://dx.doi.org/10.3390/molecules17056011
[28] K. U. Sadek, R. M. Shaker, M. AbdElrady and M. H. Elnagdi, “ A Novel Method for the Synthesis of Polysubstituted Diaminobenzonitrile Derivatives Using Controlled Microwave Heating,” Tetrahedron Letters, Vol. 51, No. 48, 2010, pp. 6319-6321.
[29] C.-J. Liu and J.-D. Wang, “Copper (II) Sulfamate: An Efficient Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Thiones,” Molecules, Vol. 14, No. 2, 2009, pp. 763-770.
http://dx.doi.org/10.3390/molecules14020763
[30] J. S. Yadav, B. V. S. Reddy, K. B. Reddy, K. S. Raj and A. R. Prasad, “Ultrasound-Accelerated Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones with Ceric Ammonium Nitrate,” Journal of the Chemical Society, Perkin Transactions, Vol. 1, No. 16, 2001, pp. 1939-1941.
http://dx.doi.org/10.1039/b102565c
[31] H. W. Zhan, J. X. Wang and X. T. Wang, “Solvent- and Catalyst-Free Synthesis of Dihydropyrimidinthiones in One-Pot under Focused Microwave Irradiation,” Chinese Chemical Letters, Vol. 19, No. 10, 2008, pp. 1183-1185.
[32] A. D. Patil, N. V. Kumar, W. C. Kokke, M. F. Bean, A. J. Freyer, C. D. Brosse, S. Mai, A. Truneh, D. J. Faulkner, B. Carte, A. L. Breen, R. P. Hertzberg, R. K. Johnson, J. W. Westly and B. C. M. Potts, “Novel Alkaloids from the Sponge Batzellasp: Inhibitors of HIV gp120-Human CD4 Binding,” European Journal of Organic Chemistry, Vol. 60, No. 7, 1995, pp.1182-1188.
[33] R. Ghosh, S. Maiti and A. Chakraborty, “In(OTf)3-Catalyzed One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones,” Journal of Molecular Catalysis A: Chemical, Vol. 217, No. 1, 2004, pp. 47-50.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.