Effects of Carnosine and Beta-Alanine Ingestion on Anaerobic Sprint Performance and Peripheral Blood Mononuclear Cell Interleukin-6 and -10 Gene Expression


Chronic administration of β-alanine has been shown to increase muscle carnosine content and improve anaerobic performance. It is not clear whether acute ingestion of carnosine and beta alanine may have the same effects. With a view to investigating acute effects of carnosine and β-alanine ingestion on anaerobic intermittent running performance and on the responses of Interleukin-6 and -10 to exercise, twelve healthy, young, active participants (age: 21 ± 4 years) underwent the running-based anaerobic test (RAST) twice (with 30 min recovery in between) on two separate occasions (randomized, crossover design). The test consisted of 6 × 35-m sprints interspersed with 10 s rests after acute ingestion (4 hours before the test) of either 2 g L-carnosine + 2 g β-alanine or placebo. The overall performance decreased (RAST1 vs RAST2, carnosine + β-alanine: 32.8 ± 1.3 s, 33.4 ± 1.2 s; Placebo: 32.9 ± 1.0 s, 33.6 ± 1.2 s), pain after RASTs increased (RAST1 vs RAST2, carnosine + β-alanine: 3.0 ± 2.1 a.u., 4.2 ± 1.9 a.u.; Placebo: 3.0 ± 1.8 a.u., 3.4 ± 1.2 a.u.) almost in the same way in both groups, and RPE did not show any difference. IL6 and IL10 gene expression increased and decreased respectively in response to exercise in the same fashion in both conditions. During RAST 2 we found a potentially increased performance in the carnosine + β-alanine group (main effect of condition, p < 0.05). In conclusion these findings suggest that acute administration of carnosine + β-alanine does not influence the cytokine response to exercise but might have a very small enhancing effect on anaerobic sprint performance.

Share and Cite:

Invernizzi, P. , Venerando, B. , Pierro, F. , Saronni, S. and Papini, N. (2013) Effects of Carnosine and Beta-Alanine Ingestion on Anaerobic Sprint Performance and Peripheral Blood Mononuclear Cell Interleukin-6 and -10 Gene Expression. Advances in Physical Education, 3, 197-204. doi: 10.4236/ape.2013.34032.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Alhamdani, M. S., Al-Azzawie, H. F., & Abbas, F. K. (2007). Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Peritoneal Dialysis International, 27, 86-89.
[2] Baguet, A., Bourgois, J., Vanhee, L., Achten, E., & Derave, W. (2010). Important role of muscle carnosine in rowing performance. Journal of Applied Physiology, 109, 1096-1101.
[3] Begum, G., Cunliffe, A., & Leveritt, M. (2005). Physiological role of carnosine in contracting muscle. International Journal of Sport Nutrition and Exercise Metabolism, 15, 493-514.
[4] Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.
[5] Capomaccio, S., Cappelli, K., Spinsanti, G., Mencarelli, M., Muscettola, M., Felicetti, M., Verini Supplizi A., & Bonifazi, M. (2011). Athletic humans and horses: Comparative analysis of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) expression in peripheral blood mononuclear cells in trained and untrained subjects at rest. BMC Physiology, 11, 3.
[6] Craig, C. L., Marshall, A. L., Sjostrom, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical activity questionnaire: 12country reliability and validity. Medicine & Science in Sports & Exercise, 35, 1381-1395.
[7] Decker, E. A., Livisay, S. A., & Zhou, S. (2000). Re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Moscow), 65, 766-770.
[8] Derave, W., Ozdemir, M. S., Harris, R. C., Pottier, A., Reyngoudt, H., Koppo, K., et al. (2007). beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology, 103, 1736-1743.
[9] Derave, W., Everaert, I., Beeckman, S., & Baguet, A. (2010). Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Medicine, 40, 247-263.
[10] Dutka, T. L., & Lamb, G. D. (2004). Effect of carnosine on excitationcontraction coupling in mechanically-skinned rat skeletal muscle. Journal of Muscle Research and Cell Motility, 25, 203-213.
[11] Fischer, C. P. (2006). Interleukin-6 in acute exercise and training: What is the biological relevance? Exercise Immunology Review, 12, 6-33.
[12] Fleisher-Berkovich, S., Abramovitch-Dahan, C., Ben-Shabat, S., Apte, R., & Beit-Yannai, E. (2009). Inhibitory effect of carnosine and Nacetyl carnosine on LPS-induced microglial oxidative stress and inflammation. Peptides, 30, 1306-1312.
[13] Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., Doleshal, P., & Dodge, C. (2001). A new approach to monitoring exercise training. Journal of Strength and Conditioning Research, 15, 109-115.
[14] Gardner, M. L., Illingworth, K. M., et al. (1991). Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. Journal of Physiology, 439, 411-22.
[15] Hagiwara, E., Abbasi, F., Mor, G., Ishigatsubo, Y., & Klinman, D. M. (1995). Phenotype and frequency of cells secreting IL-2, IL-4, IL-6, IL-10, IFN and TNF-α in human peripheral blood. Cytokine, 7, 815822. http://dx.doi.org/10.1006/cyto.1995.0098
[16] Harris, R. C., Wise, J. A., Price, K. A., Kim, H. J., Kim, C. K., & Sale, C. (2012). Determinants of muscle carnosine content. Amino Acids, 43, 5-12. http://dx.doi.org/10.1007/s00726-012-1233-y
[17] Hill, C. A., Harris, R. C., Kim, H. J., Harris, B. D., Sale, C., Boobis, L. H., et al. (2007). Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids, 32, 225-233.
[18] Hobson, R. M., Saunders, B., Ball, G., Harris, R. C., & Sale, C. (2012). Effects of beta-alanine supplementation on exercise performance: A meta-analysis. Amino Acids, 43, 25-37.
[19] Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., & Marcora, S. M. (2004). Use of RPE-based training load in soccer. Medicine & Science in Sports & Exercise, 36, 1042-1047.
[20] Invernizzi, P.L.,Benedini, S., Saronni, S., Merati, G., & Bosio, A. (2013). The acute administration of Carnosine and beta-Alanine does not improve running anaerobic performance and has no effect on the metabolic response to exercise. Advances in Physical Education, 3, 169-174. http://dx.doi.org/10.4236/ape.2013.34028
[21] Jagim, A. R., Wright, G. A., Brice, A. G., & Doberstein, S. T. (2013). Effects of Beta-alanine supplementation on sprint endurance. Journal of Strength and Conditioning Research, 27, 526-532.
[22] Kohen, R., Yamamoto, Y., Cundy, K. C., & Ames, B. N. (1988). Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain Proceedings of the National Academy of Sciences USA, 85, 3175-3179.
[23] Lee, Y. T., Hsu, C. C., Lin, M. H., Liu, K. S., & Yin, M. C. (2005). Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. European Journal of Pharmacology, 513, 145-150.
[24] Margolis, F. L., Grillo, M., Kawano, T., & Farbman, A. I. (1985). Carnosine synthesis in olfactory tissue during ontogeny: Effect of exogenous beta-alanine. Journal of Neurochemistry, 44, 1459-1464.
[25] Nagai, K., Tanida, M., Niijima, A., Tsuruoka, N., Kiso, Y., Horii, et al. (2012). Role of L-carnosine in the control of blood glucose, blood pressure, thermogenesis, and lipolysis by autonomic nerves in rats: Involvement of the circadian clock and histamine. Amino Acids, 43, 97-109.
[26] Nicoletti, V. G., Santoro, A. M., Grasso, G., Vagliasindi, L. I., Giuffrida, M. L., Cuppari, et al. (2007). Carnosine interaction with nitric oxide and astroglial cell protection. Journal of Neuroscience Research, 85, 2239-2245. http://dx.doi.org/10.1002/jnr.21365
[27] Ostrowski, K., Rohde, T., Asp, S., Schjerling, P., & Pedersen, B. K. (1999). Proand anti-inflammatory cytokine balance in strenuous exercise in humans. Journal of Physiology, 515, 287-291.
[28] Petersen, A. M., & Pedersen, B. K. (2006). The role of IL-6 in mediating the anti-inflammatory effects of exercise. Journal of Physiology and Pharmacologyl, 57, 43-51.
[29] Rhind, S. G., Castellani, J. W., Brenner, I. K., Shephard, R. J., Zamecnik, J., Montain, S. J., et al. (2001). Intracellular monocyte and serum cytokine expression is modulated by exhausting exercise and cold exposure. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 281, R66-75.
[30] Sander, B., Andersson, J. & Andersson, U. (1991) Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunological Reviews, 119, 65-93.
[31] Son, D. O., Satsu, H., Kiso, Y., & Shimizu, M. (2004). Characterization of carnosine uptake and its physiological function in human intestinal epithelial Caco-2 cells. Biofactors, 21, 395-398.
[32] Suzuki, Y., Ito, O., Mukai, N., Takahashi, H., & Takamatsu, K. (2002). High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Japanese Journal of Physiology, 52, 199-205.
[33] Suzuki, Y., Nakao, T., Maemura, H., Sato, M., Kamahara, K., Morimatsu, F., & Takamatsu, K. (2006). Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Medicine & Science in Sports & Exercise, 38, 334-338.
[34] Zagatto, A. M., Beck, W. R., & Gobatto, C. A. (2009). Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. Journal of Strength & Conditioning Research, 23, 1820-1827.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.