Effect of Hydroxide Ion Concentration on the Morphology of the Hydroxyapatite Nanorods Synthesized Using Electrophoretic Deposition
Khalil Abdelrazek Khalil, Abdulhakim A. Almajid, Mahmoud S. Soliman
DOI: 10.4236/msa.2011.22014   PDF    HTML     5,472 Downloads   10,638 Views   Citations


The effect of OH- concentration on the morphology of the hydroxyapatite (HA) nanorod synthesized using electrophoretic deposition (EPD) method has been investigated. The growth of HA nanorods was achieved on polished titanium substrates. The electrolyte used in this study was prepared by dissolving calcium acetate (Ca (CH3COO)2H)2O), and Ammonium dihydrogen phosphate (NH4H2PO4) in distilled water without any surfactant, and was maintained at 80-130°C. Two electrolytes with OH- concentration of 10-4 and 10-10 were prepared. A highly homogeneous HA nanorods deposited on the titanium substrates were obtained after 1 h in the electrolytes with higher OH- concentration of 10-4. On the other hand, a flower-shaped HA nanostructures composed of needle-like HA crystals were obtained in the electrolyte of lower OH- concentration of 10-10. The deposits were identified as HA crystal rods grown along the c axis and perpendicular to the substrate. The HA deposits were characterized by scanning electron microscopy (SEM) while detailed structural characterization was done using a transmission electron microscope (TEM) equipped with selected area electron diffraction (SAED) patterns.

Share and Cite:

K. Khalil, A. Almajid and M. Soliman, "Effect of Hydroxide Ion Concentration on the Morphology of the Hydroxyapatite Nanorods Synthesized Using Electrophoretic Deposition," Materials Sciences and Applications, Vol. 2 No. 2, 2011, pp. 105-110. doi: 10.4236/msa.2011.22014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Y. M. Kong, S. Kim and H. E. Kim, “Reinforcement of Hydroxyapatite Bioceramic by Addition of ZrO2 Coated with Al2O3,” Journal of the American Ceramic Society, Vol. 82, No. 11, 1999, pp. 2963-2968. doi:10.1111/j.1151-2916.1999.tb02189.x
[2] W. Suchanek and M. Yoshimura, “Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants,” Journal of Materials Research, Vol. 13, No. 1, 1998, pp. 94-117. doi:10.1557/JMR.1998.0015
[3] M. H. Fathi and A. Hanifi, “Evaluation and Characterization of Nanostructure Hydroxyapatite Powder Prepared by Simple Sol-Gel Method,” Materials Letters, Vol. 61, No. 18, 2007, pp. 3978-3983. doi:10.1016/j.matlet.2007.01.028
[4] M. Yoshimura, H. Suda, K. Okamoto and K. Ioku, “Hydrothermal Synthesis of Biocompatible Whiskers,” Journal of Materials Science, Vol. 29, No. 1994, pp. 3399-3402. doi:10.1007/BF00352039
[5] S. Mann and G. A. Ozin, “Synthesis of Inorganic Materials with Complex Form,” Nature, Vol. 382, No. 6589, 1996, pp. 313-318. doi:10.1038/382313a0
[6] F. Kim, S. Kwan, J. Akana and P. Yang, “Langmuir-Blodgett, Nanorod Assembly,” Journal of the American Ceramic Society, Vol. 123, No. 18, 2001, pp. 4360-4361.
[7] Y. Ota, T. Iwashit, T. Kasuga and Y. Abe, “Novel Preparation Method of Hydroxyapatite Fibers,” Journal of the American Ceramic Society, Vol. 81, No. 6, 1998, pp. 1665-1668. doi:10.1111/j.1151-2916.1998.tb02529.x
[8] A. Tiselius, S. Hjertén and O. Levin, “Protein Chromatography on Calcium Phosphate Columns,” Archives of Biochemistry and Biophysics, Vol. 65, No. 1, 1956, pp. 132-155. doi:10.1016/0003-9861(56)90183-7
[9] O. Fowler, “Infrared Studies of Apatites. II. Preparation of Normal and Isotopically Substituted Calcium, Strontium, and Barium Hydroxyapatites and Spectra-Structure-Composition Correlations,” Inorganic Chemistry, Vol. 13, No. 1, 1974, pp. 207-214. doi:10.1021/ic50131a040
[10] A. Bigi, E. Boanini and K. Rubini, “Hydroxyapatite Gels and Nanocrystals Prepared through a Sol-Gel Process,” Journal of Solid State Chemistry, Vol. 177, No. 9, 2004, pp. 3092-3098. doi:10.1016/j.jssc.2004.05.018
[11] M. Li, H. Schnablegger and S. Mann, “Coupled Synthesis and Self-Assembly of Nanoparticles to Give Structures with Controlled Organization,” Nature, Vol. 402, No. 6760, 1999, pp. 393-395. doi:10.1038/46509
[12] D. Walsh, J. D. Hopwood and S. Mann, “Construction of Reticulated Calcium Phosphate Frameworks in Bicontinuous Reverse Microemulsions,” Science, Vol. 264, No. 5165, 1994, pp. 1576-1578. doi:10.1126/science.264.5165.1576
[13] Y. Liu, W. Wang, Y. Zhan, C. Zheng and G. Wang, “A Simple Route to Hydroxyapatite Nanofibers,” Materials Letters, Vol. 56, No. 4, 2002, pp. 496-501. doi:10.1016/S0167-577X(02)00539-6
[14] S. Bose and S. K. Saha, “Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique,” Chemistry of Materials, Vol. 15, No. 23, 2003, pp. 4464-4469. doi:10.1021/cm0303437
[15] J. D. Hopwood and S. Mann, “Synthesis of Barium Sulfate Nanoparticles and Nanofilaments in Reverse Micelles and Microemulsions,” Chemistry of Materials, Vol. 9, No. 8, 1997, pp. 1819-1828. doi:10.1021/cm970113q
[16] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape Control of CdSe Nanocrystals,” Nature, Vol. 404, No. 6773, 2000, pp. 59-61. doi:10.1038/35003535
[17] N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann and C. J. Murphy, “Liquid Crystalline Assemblies of Ordered Gold Nanorods,” Journal of Materials Chemistry, Vol. 12, No. 10, 2002, pp. 2909-2912. doi:10.1039/b205225c
[18] Z. Liu, Z. Hu, J. Liang, S. Li, Y. Yang, S. Peng and Y. Qian, “Size-Controlled Synthesis and Growth Mechanism of Monodisperse Tellurium Nanorods by a Surfactant-Assisted Method,” Langmuir, Vol. 20, No. 1, 2004, pp. 214-218. doi:10.1021/la035160d
[19] M. I. Kay, R. A. Young and A. S. Posner, “Crystal Structure of Hydroxyapatite,” Nature, Vol. 204, No. 4963, 1964, pp. 1050-1052. doi:10.1038/2041050a0
[20] J.-S. Lee and C.-K. Hsu, “The Devitrification Behavior of Calcium Phosphate Glass with TiO2 Addition,” Thermochimica Acta, Vol. 333, No. 2, 1999, pp. 115-119. doi:10.1016/S0040-6031(99)00095-7
[21] W. J. Li, E. W. Shi, W. Z. Zhong and Z. W. Yin, “Growth Mechanism and Growth Habit of Oxide Crystals,” Journal of Crystal Growth, Vol. 203, No. 1-2, 1999, pp. 186-196. doi:10.1016/S0022-0248(99)00076-7
[22] G. C. Koumoulidis, T. C. Vaimakis and A. T. Sdoikos, “Preparation of Hydroxyapatite Lathlike Particles Using High-Speed Dispersing Equipment,” Journal of the American Ceramic Society, Vol. 84, No. 6, 2001, pp. 1203-1208. doi:10.1111/j.1151-2916.2001.tb00817.x
[23] J. N. Nian and H. Teng, “Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor,” The Journal of Physical Chemistry B, Vol. 110, No. 9, 2006, pp. 4193-4198. doi:10.1021/jp0567321
[24] W. E. Brown and J. P. Smith, “Octacalcium Phosphate and Hydroxyapatite: Crystallographic and Chemical Relations between Octacalcium Phosphate and Hydroxyapatite,” Nature, Vol. 196, 1962, pp. 1050-1055. doi:10.1038/1961050a0
[25] M. Ashok, N. M. Sundaram and S. N. Kalkura., “Crystallization of Hydroxyapatite at Physiological Temperature,” Materials Letters, Vol. 57, No. 13-14, 2003, pp. 2066-2070. doi:10.1016/S0167-577X(02)01140-0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.