Neuropathology Classifier Based on Higher Order Spectra


Epilepsy is the most common neuropathology. Statistical studies related to the disease reported that 20% - 25% of epileptic patients with occurrence of seizures were even under treatment with drugs. This article presents a strategy for improved detection of the neuropathology, based on electroencephalogram (EEG), using a classifier built with support vector machines (SVC). The SVC is designed based on feature extraction of higher order spectra of time series derived from the EEG applied to epileptic patients and control patients. As demonstrated in the study presented, the EEG time series are highly nonlinear and non-Gaussian, therefore, exhibit higher order spectra, which are extracted features that improve the accuracy in the performance of SVC. The results of this study suggest the development of highly accurate computational tools for the diagnosis of this dreaded neuropathology.

Share and Cite:

Seijas, C. , Caralli, A. and Villazana, S. (2013) Neuropathology Classifier Based on Higher Order Spectra. Journal of Computer and Communications, 1, 28-32. doi: 10.4236/jcc.2013.14005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Sornmo and P. Laguna, “Bioelectrical Signals Processing in Cardiac and Neurological Applications,” Elsevier Academic Press, Amsterdam, 2005.
[2] M. Teplan, “Fundamentals of EEG Measurement,” Measurement Science Review, Vol. 2, Section 2, Bratislava, Slovakia, 2002.
[3] P. Guillén, “Procesamiento Digital de EEG,” Universidad de los Andes, Mérida, Venezuela, Noviembre 2005.
[4] J. Morales, J. Teijeiro, E. Guerra, G. López and R. Masías. “Detección de No-Gaussianidad en Senales Eléctricas de Estructuras Cerebrales Profundas,” Bioingeniería y Física Medica Cubana, Vol. 3, No. 2, 2002, pp. 18-24.
[5] D. Luengo, “Estimación óptima de Secuencias Caóticas con Aplicación en Comunicaciones,” Tesis Doctoral, Universidad de Cantabria, Cantabria, 2006.
[6] A. Swami, J. Mendel and C. Nikias, “Higher-Order Spectral Analysis Toolbox: User’s Guide,” Version 6.0, The MathWorks Inc., Natick, 2007.
[7] P. Venkatakrishnana, S. Sangeethab and R. Sukaneshc, “Detection of Quadratic Phase Coupling from Human EEG Signals using Higher Order Statistics and Spectra,” Department of Information Technology, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India, 2009.
[8] A. Delourne and S. Makeig, “EEGLab,” Version 7, Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, San Diego, April 2008.
[9] A. Delorme and S. Makeig, “EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis,” Journal of Neuroscience Methods, Vol. 134, 2004, pp. 9-21.
[10] The MathWorks Team, “Statistics Toolbox 6 User’s Guide,” Version 6.0, The MathWorks Inc., Natick, 2007.
[11] B. Florentino, “Modelling an Epileptic Brain Pattern Classification,” MsC Thesis, University of Reading, United Kingdom, 2008.
[12] C. Seijas, A. Caralli and S. Villazana, “Estimation of Action Potential of the Cellular Membrane using Support Vectors Machines,” Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, Aug 30-Sept 3 2006, pp. 4200-4204,
[13] C. Seijas, A. Caralli and S. Villazana, “Estimation of Brain Activity using Support Vector Machines,” Proceedings of the 3rd IEEE EMBS International Conference on Neural Engineering, Hawaii, 2-5 May 2007, pp. 604-607.
[14] S. Villazana and G. Montilla, “Un Toolbox para Procesamiento de Senales usando Máquinas de Vectores de Soporte,” Centro de Procesamiento de Imágenes, Facultad de Ingeniería, Universidad de Carabobo, Valencia, Venezuela, 2008.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.