Micro-environmentally Restricted Yeast Cell Growth within Ca-alginate Microbeads

Abstract

Micro-environmental restriction effects to yeast cell growth obtained within Ca-alginate microbeads are considered. It is complex phenomenon influenced by: (1) relaxation of expanded polymer network around the cellular clusters, (2) forces generated by cell growth inside the beads and (3) interactions between solvent, network parts and cells. The resulting effects are measured experimentally by estimating volume of microbeads and yeast cell concentration as function of time of cultivation. Comparative analysis of dynamics of cell growth and increase of microbead volume through four regimes indicates that reversible and irreversible local structural changes of Ca-alginate hydrogel induces micro-environmental restrictions to cell growth. The mechanism of restrictions includes both mechanical and electrostatic effects.

Share and Cite:

I. Pajic-Lijakovic, B. Bugarski, B. Bugarski, M. Plavsic, S. Levic, A. Kalusevic and V. Nedovic, "Micro-environmentally Restricted Yeast Cell Growth within Ca-alginate Microbeads," Engineering, Vol. 4 No. 10B, 2012, pp. 180-183. doi: 10.4236/eng.2012.410B047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. Nedovic, R. Willaert, eds. Applications of Cell Immobilization Biotechnology, Berlin, Heidelberg, New York, Springer Dordrecht, 2005.
[2] I. Pajic-Lijakovic, D. Bugarski, M. Plavsic, B. Bugarski, “Influence of microenvironmental conditions on hybridoma cell growth inside alginate-poly-L-lysine microcapsule”, Proc. Biochem., 42(2), pp. 167-174, 2007.
[3] I. Pajic-Lijakovic, M. Plavsic, B. Bugarski, V. Nedovic, “Ca-alginate hydrogel mechanical transformations - the influence on yeast cell growth”, J. Biotechnol., 129(3), pp. 446-452, 2007.
[4] I. Pajic-Lijakovic, M. Plavsic, V. Nedovic, B. Bugarski, “Investigation of Ca-alginate hydrogel rheological behavior in conjunction with immobilized yeast cell growth dynamics”, J. Microencap., 24(5), pp. 420-429, 2007.
[5] B. Bugarski, G. Jovanovic, G. Vunjak-Novakovic, “Bioreactor Systems Based on Microencapsulated Animal Cell Cultures”, in: Fundamentals of Animal Cells Immobilization and Microencapsulation, M.F.A. Goosen Ed, Boca Raton, Florida: CRC Press; 1993, pp. 267-296.
[6] B.Q. Shen, S. Reid, P.F. Greenfield, “Continuous monoclonal antibody production by a composite gel perfusion in protein free medium”, in: Animal Cell Technology: Basic & Applied Aspects, H. Murakami ed, Netherlands, Kluwer Academic Publishers; 1992. pp. 173-178.
[7] J.L. Drury, R.G. Dennis, D.J. Mooney, “The tensile properties of alginate hydrogels”, Biomaterials 25, pp. 3187-3199, 2004.
[8] K.Y. Lee, J.A. Rowley, P. Eiselt, E.M. Moy, K.H. Bouhadir, D.J. Mooney, “Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density”, Macromolecules 33, pp. 4291-4294, 2000.
[9] B.T. Stokke, K.I. Draget, O. Smidsrod, Y. Yuguchi, H. Urakawa, K. Kajiwara, “Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels”, Macromolecules 33, pp. 1853-1863, 2000.
[10] A. Leal-Egana, U. Dietrich-Braumann, A. Diaz-Cuenca, M. Nowicki, A. Bader, “Determination of pore size distribution at the cell-hydrogel interface”, J. Nanobiotechnol. Open Access 9(24), pp. 1-7, 2011.
[11] J.D. Murray, P.K. Maini, R.T. Tranquillo, “Mechano-chemical models for generating biological pattern and form in development”, Physics Reports 171(2), pp. 59-84, 1989.
[12] M. Perullini, M. Jobbagy, M. Bermudez, M.B. Moretti, S.C. Garcia, S.A. Bilmess, ?Optimizing Silica Encapsulation of Living Cells: In Situ Evaluation of Cellular Stress“, Chem. Mater. 20, pp. 3015-3021, 2008.
[13] N.E. Simpson, C.L. Stabler, C.P. Simpson, A. Sambanis, I. Constantindis, “The role of CaCl2-gluronic acid interaction on alginate encapsulated βTC3 cells”, Biomaterials 25, pp. 2603-2610, 2004.
[14] C.L. Woldringh, P.G. Huls, N.O.E. Vischer, ”Volume Growth of Daughter and Parent Cells during the Cell Cycle of Saccharomyces cerevisiae a/α as Determined by Image Cytometry”, J. Bacteriol. 175(10), pp. 3174-3181, 1993.
[15] C. Hatzis, D. Porro,”Morphologically-structured models of growth budding yeast populations”, J. Biotechnol. 124, pp. 420-436, 2006.
[16] M. Vanoni, M. Vai, L. Popolo, L. Alberghina,”Structural Heterogeneity in Populations of the Budding Yeast Saccharomyces cerevisiae”, J. Bacteriol. 156(3), pp. 1282-1291, 1983.
[17] B.M. Bugarski, B. Obradovic, V.A. Nedovic, M.F.A. Goosen, “Electrostatic Droplet Generation Technique for Cell Immobilization”, in: Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering, Spasic, AM, Hsu JP., Eds. Marcel Dekker, CRC Press, Taylor & Francis, 2006, pp. 869-886.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.