[1]
|
V. Nedovic, R. Willaert, eds. Applications of Cell Immobilization Biotechnology, Berlin, Heidelberg, New York, Springer Dordrecht, 2005.
|
[2]
|
I. Pajic-Lijakovic, D. Bugarski, M. Plavsic, B. Bugarski, “Influence of microenvironmental conditions on hybridoma cell growth inside alginate-poly-L-lysine microcapsule”, Proc. Biochem., 42(2), pp. 167-174, 2007.
|
[3]
|
I. Pajic-Lijakovic, M. Plavsic, B. Bugarski, V. Nedovic, “Ca-alginate hydrogel mechanical transformations - the influence on yeast cell growth”, J. Biotechnol., 129(3), pp. 446-452, 2007.
|
[4]
|
I. Pajic-Lijakovic, M. Plavsic, V. Nedovic, B. Bugarski, “Investigation of Ca-alginate hydrogel rheological behavior in conjunction with immobilized yeast cell growth dynamics”, J. Microencap., 24(5), pp. 420-429, 2007.
|
[5]
|
B. Bugarski, G. Jovanovic, G. Vunjak-Novakovic, “Bioreactor Systems Based on Microencapsulated Animal Cell Cultures”, in: Fundamentals of Animal Cells Immobilization and Microencapsulation, M.F.A. Goosen Ed, Boca Raton, Florida: CRC Press; 1993, pp. 267-296.
|
[6]
|
B.Q. Shen, S. Reid, P.F. Greenfield, “Continuous monoclonal antibody production by a composite gel perfusion in protein free medium”, in: Animal Cell Technology: Basic & Applied Aspects, H. Murakami ed, Netherlands, Kluwer Academic Publishers; 1992. pp. 173-178.
|
[7]
|
J.L. Drury, R.G. Dennis, D.J. Mooney, “The tensile properties of alginate hydrogels”, Biomaterials 25, pp. 3187-3199, 2004.
|
[8]
|
K.Y. Lee, J.A. Rowley, P. Eiselt, E.M. Moy, K.H. Bouhadir, D.J. Mooney, “Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density”, Macromolecules 33, pp. 4291-4294, 2000.
|
[9]
|
B.T. Stokke, K.I. Draget, O. Smidsrod, Y. Yuguchi, H. Urakawa, K. Kajiwara, “Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels”, Macromolecules 33, pp. 1853-1863, 2000.
|
[10]
|
A. Leal-Egana, U. Dietrich-Braumann, A. Diaz-Cuenca, M. Nowicki, A. Bader, “Determination of pore size distribution at the cell-hydrogel interface”, J. Nanobiotechnol. Open Access 9(24), pp. 1-7, 2011.
|
[11]
|
J.D. Murray, P.K. Maini, R.T. Tranquillo, “Mechano-chemical models for generating biological pattern and form in development”, Physics Reports 171(2), pp. 59-84, 1989.
|
[12]
|
M. Perullini, M. Jobbagy, M. Bermudez, M.B. Moretti, S.C. Garcia, S.A. Bilmess, ?Optimizing Silica Encapsulation of Living Cells: In Situ Evaluation of Cellular Stress“, Chem. Mater. 20, pp. 3015-3021, 2008.
|
[13]
|
N.E. Simpson, C.L. Stabler, C.P. Simpson, A. Sambanis, I. Constantindis, “The role of CaCl2-gluronic acid interaction on alginate encapsulated βTC3 cells”, Biomaterials 25, pp. 2603-2610, 2004.
|
[14]
|
C.L. Woldringh, P.G. Huls, N.O.E. Vischer, ”Volume Growth of Daughter and Parent Cells during the Cell Cycle of Saccharomyces cerevisiae a/α as Determined by Image Cytometry”, J. Bacteriol. 175(10), pp. 3174-3181, 1993.
|
[15]
|
C. Hatzis, D. Porro,”Morphologically-structured models of growth budding yeast populations”, J. Biotechnol. 124, pp. 420-436, 2006.
|
[16]
|
M. Vanoni, M. Vai, L. Popolo, L. Alberghina,”Structural Heterogeneity in Populations of the Budding Yeast Saccharomyces cerevisiae”, J. Bacteriol. 156(3), pp. 1282-1291, 1983.
|
[17]
|
B.M. Bugarski, B. Obradovic, V.A. Nedovic, M.F.A. Goosen, “Electrostatic Droplet Generation Technique for Cell Immobilization”, in: Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering, Spasic, AM, Hsu JP., Eds. Marcel Dekker, CRC Press, Taylor & Francis, 2006, pp. 869-886.
|