[1]
|
K. S. Miller and B. Ross, “An Introduction to the Fractional Calculus and Fractional Differential Equations,” John Wily and Sons, INC., New York, Chichester, Brisbane, Toronto, Singapore, 1993.
|
[2]
|
I. Podlubny, “Fractional Differential Equations,” Academic Press, San Diego, Boston, New York, London, Sydney, Tokyo, Toronto, 1999.
|
[3]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, “Fractional Integrals and Derivatives (Theory and Applications),” Gordon and Breach, New York, London, and Paris, 1993.
|
[4]
|
R. Gorenflo and F. Mainardi, “Fractional Calculus: Integral and Differential Equations of Fractional Order,” In: A. Carpinteri and F. Mainardi, Eds., Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York, 1997, pp. 223-276.
http://www.fracalmo.org
|
[5]
|
N. U. Prabhu, “Stochastic Processes (Basic Theory and Its Applications),” The Macmillan Company, New York, Collier-Macmillan Limited, London, 1965.
|
[6]
|
E. A. Abdel-Rehim, “Modelling and Simulating of Classical and Non-Classical Diffusion Processes by Random Walks,” Mensch&Buch Verlag, 2004.
http://www.diss.fu-berlin.de/2004/168/index.html
|
[7]
|
W. Feller, “On a Generalization of Marcel Riesz’ Potentials and the Semi-Groups Generated by Them,” In: Meddelanden Lunds Universitetes Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome Suppl. dédié a M. Riesz, Lund, 1952, pp. 73-81.
|
[8]
|
M. M. Meerschaert and C. Tadjeran, “Finite Difference Approximations for Fractional Advection-Dispersion Flow Equation,” Journal of Computational and Applied Mathematics, Vol. 172, No. 1, 2004, pp. 65-77.
http://dx.doi.org/10.1016/j.cam.2004.01.033
|
[9]
|
D. A.Benson, S. W. Wheatcraft and M. M. Meerschaert, “Application of a Fractional Advection-Dispersion Equation,” Water Resource Research, Vol. 36, No. 6, 2000, pp. 1403-1412. http://dx.doi.org/10.1029/2000WR900031
|
[10]
|
D. A. Benson, R. Schumer, M. M. Meerschaert and S. W. Wheatcraft, “Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests,” Transport in Porous Media, Vol. 42, No. 1-2, 2001, pp. 211-240.
http://dx.doi.org/10.1023/A:1006733002131
|
[11]
|
B. Baeumer, D. A. Benson, M. M. Meerschaert and S. W. Wheatcraft, “Subordinated Advection-Dispersion Equation for Contaminant Transport,” Water Resource Research, Vol. 37, No. 6, 2001, pp. 1543-1550.
|
[12]
|
R. Schumer, M. M. Meerschaert and B. Baeumer, “Fractional Advection-Dispersion Equations for Modeling Transport at the Earth Surface,” Journal of Geophysical research, Vol. 114, No. F4, 2009.
http://dx.doi.org/10.1029/2008JF001246
|
[13]
|
F. Huang and F. Liu, “The Fundamental Solution of the spaace-time Fractional advection-dispersion Equation,” Journal of Applied Mathematics and Computing Vol. 18, No. 1-2, 2005, pp. 339-350.
|
[14]
|
Y.-S. Park and J.-J. Baik, “Analytical Solution of the Advection-Diffusion Equation for a Ground-Level Finite Area Source,” Atomspheric Environment, Vol. 42, No. 40, 2008, pp. 9603-9069.
http://dx.doi.org/10.1016/j.atmosenv.2008.09.019
|
[15]
|
D. K. Jaiswal, A. Kumar and R. R. Yadav, “Analytical Solution to the One-Dimensional Advection-Diffusion Equation with Temporally Dependent Coefficients,” Journal of Water Resource and Protection, Vol. 3, No. 1, 2011, pp. 76-84.
http://dx.doi.org/10.4236/jwarp.2011.31009
|
[16]
|
Y. Xia, J. C. Wu and L. Y. Zhou, “Numerical Solutions of Time-Space Fractional Advection-Dispersion Equations,” ICCES, Vol. 9, No. 2, 2009, pp. 117-126.
|
[17]
|
Q. Liu, F. Liu, I. Turner and V. Anh, “Approximation of the Lévy-Feller Advection-Dispersion Process by Random Walk and Finite Difference Method,” Journal of Computational Physics, Vol. 222, No. 1, 2007, pp. 57-70.
http://dx.doi.org/10.1016/j.jcp.2006.06.005
|
[18]
|
F. Mainardi, Y. Luchko and G. Pagnini, “The Fundamental Solution of the Space-Time Fractional Diffusion Equation,” Fractional Calculus and Applied Analysis, Vol. 4, No. 2, 2001, pp. 153-192. www.fracalmo.org
|
[19]
|
R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi, “Time-Fractional Diffusion: A Discrete Random Walk Approach,” Nonlinear Dynamics, Vol. 29, No. 1-4, 2002, pp. 129-143. http://dx.doi.org/10.1023/A:1016547232119
|
[20]
|
R. Gorenflo and E. A. Abdel-Rehim, “Discrete Models of Time-Fractional Diffusion in a Potential Well,” Fractional Calculus and Applied Analysis, Vol. 8, No. 2, 2005, pp. 173-200.
|
[21]
|
R. Gorenflo and E. A. Abdel-Rehim, “From Power Laws to Fractional Diffusion: The Direct Way,” Vietnam Journal of Mathematics, Vol. 32, No. SI, 2004, pp. 65-75.
|
[22]
|
R. Gorenflo and E. A. Abdel-Rehim, “Convergence of the Grünwald-Letnikov Scheme for Time-Fractional Diffusion,” Journal of Computational and Applied Mathematics, Vol. 205, No. 2, 2007, pp. 871-881.
http://dx.doi.org/10.1016/j.cam.2005.12.043
|
[23]
|
R. Gorenflo and E. A. Abdel-Rehim, “Simulation of Continuous Time Random Walk of the Space-Fractional Diffusion Equations,” Journal of Computational and Applied Mathematics, Vol. 222, No. 2, 2008, pp. 274-285.
http://dx.doi.org/10.1016/j.cam.2007.10.052
|
[24]
|
E. A. Abdel-Rehim, “From the Ehrenfest Model to TimeFractional Stochastic Processes,” Journal of Computational and Applied Mathematics, Vol. 233, No. 2, 2009, pp. 197-207. http://dx.doi.org/10.1016/j.cam.2009.07.010
|
[25]
|
A. I. Saichev and G. M. Zaslavsky, “Fractional Kinetic Equations: Solutions and Applications,” Chaos, Vol. 7, No. 4, 1997, pp. 753-764.
http://dx.doi.org/10.1063/1.166272
|
[26]
|
J. A. Goldstein, “Semigroups of Linear Operators and Applications,” Oxford University Press, Oxford and New York, 1985.
|
[27]
|
N. Jacob, “Pseudo-Differential Operators and Markov Processes,” Akademie Verlag, Berlin, 1996.
|
[28]
|
R. Metzler, J. Klafter and I. M. Sokolov, “Anomalous Transported in External Fields: Continuous Time Random Walks and Fractional Diffusion Equations Extended,” Physical Review E, Vol. 48, No. 2, 1998, pp. 1621-1633.
http://dx.doi.org/10.1103/PhysRevE.58.1621
|
[29]
|
W. Feller, “An Introduction to Probability Theory and Its Applications,” Vol. 2, Johon Wiley and Sons, New York, London, Sydney, Toronto, 1971.
|
[30]
|
M. Kac, “Random Walk and the Theory of Brownian Motion,” The American Mathematical Monthly, Vol. 54, No. 7, 1947, pp. 369-391.
http://dx.doi.org/10.2307/2304386
|
[31]
|
K. B. Oldham and J. Spanier, “The Fractional Calculus,” Vol. 3 of Mathematics in Science and Engineering, Academic Press, New York, 1974.
|
[32]
|
R. Gorenflo and F. Mainardi, “Random Walk Models for Space-Fractional Diffusion Processes,” Fractional Calculus and Applied Analysis, Vol. 1, No. 2, 1998, pp. 167190.
|
[33]
|
R. Gorenflo and F. Mainardi, “Approximation of LévyFeller Diffusion by Random Walk,” Journal of Analysis and its Applications (ZAA) Vol. 18, No. 2, 1999, pp. 231246.
|