Preparation of Mono-Dispersed Carbon Nanotubes (CNTs) with Dodecyl Itaconate and Its Utilization in Paper-Making
Xiao-Shui Wang
DOI: 10.4236/eng.2011.31006   PDF    HTML     6,094 Downloads   11,345 Views   Citations


Dodecyl itaconate (DI) was used as the dispersant for preparation of mono-dispersed carbon nanotubes in aqueous solution in this study. It is a unique type of anionic surfactant synthesized by the authors, and its high capability for dispersing CNTs is attributed to the double bond moiety on its head-group. Furthermore, author mixed aqueous mono-dispersed CNTs with pulp to produce the CNT-based paper. Different from the reported papermaking process, a novel adjusting PH process was employed to prepare paper. This method could transfer easily dispersing mono-dispersed CNTs in aqueous onto the surfaces of cellulose fibers, because PH adjustment of CNT-pulp is from the initial neutrality to weak acidity and then raising to alkalinity, The dispersion of tubes in cellulose matrix and characteristics of composite were investigated. Also, electrical resistance for retrieved CNT-based sheets was measured using fore-probe method.

Share and Cite:

X. Wang, "Preparation of Mono-Dispersed Carbon Nanotubes (CNTs) with Dodecyl Itaconate and Its Utilization in Paper-Making," Engineering, Vol. 3 No. 1, 2011, pp. 50-54. doi: 10.4236/eng.2011.31006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, 1991, pp. 56-58. doi:10.1038/354056a0
[2] S. Frank, P. Poncharal, Z. L. Wang and W. A. de Heer, “Carbon Nanotube Quantum Resistors,” Science, Vol. 280, No. 5370, June 1998, pp. 1744-1746. doi:10.1126/ science.280.5370.1744
[3] L. A. Girifalco, M. Hodak and R. S. Lee, “Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential,” Physical ReView B, Vol. 62, No. 19, 2000, pp. 13104-13110. doi:10.1103/PhysRevB.62.13104
[4] D. Tasis, N. Tagmatarchis, V. Georgakilas and M. Prato, “Soluble Carbon Nanotubes,” Chemistry - A European Journal, Vol. 9, No. 17, September 2003, pp. 4000-4008. doi:10.1002/chem. 200304800
[5] O. Matarredona, H. Rhoads, Z. Li, J. H. Har-well, L. Balzano and D. E. Resasco,Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS,” Journal of Physical Chemistry B, Vol. 107, No. 48, November 2003, pp. 13357-13367. doi: 10.1021/jp0365099
[6] J. Ozawa, G. Matsuo, N. Kamo and K. Tsujii, “Separated Organized Polymerization of an Amphiphilic Monomer and Acrylamide in One-Pot Reaction,” Macromole-cules, Vol. 39, No. 23, October 2006, pp. 7998-8002. doi:10. 1021/ma0611321
[7] B. Vigolo, C. Coulon, M. Maugey, C. Zakri and P. Poulin, “An Experimental Approach to the Percolation of Sticky Nanotubes,” Science, Vol. 309, No. 5736, August 2005, pp. 920-923. doi:10.1126/science.1112835
[8] J. Djuve, L. M. Grant, J. Sjoblom, T. P. Goulob and R. J. Pugh, “Templating of Ethyl(hydroxyethyl)Cellulose on Graphite by Surfactant?Polymer Interactions,” Langmuir, 2002, Vol. 18, No.7, 2002, pp. 2673-2677.
[9] B. Zhao, H. Hu, A. Yu, D. Perea and R. C. Haddon, “Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers,” Journal of the American Chemical Society, Vol. 127, No. 22, May 2005, pp. 8197-8203. doi:10.1021/ja042924i
[10] M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson and A. G. Yodh, “High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Wate,” Nano Lett., Vol. 3, 2003, pp. 269-273. doi:10.1021/nl025924u
[11] B. Fugetsu, E. Sano, M. Sunada, Y. Sambongi, T. Shibuya, X. S. Wang and T. Hiraki, “Electrical Conductivity and Electromagnetic Interference Shielding Efficiency of Carbon Nanotube/Cellulose Composite Paper,” Carbon, Vol. 46, No. 9, 2008, pp. 1256-1258. doi:10.1016/ bon.2008.04.024

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.