Generation and Propagation of Ultrasonic Waves in Piezoelectric Graphene Nanoribbon


Generation and propagation of ultrasonic waves in single layer Graphene Nanoribbon is studied using semi-classical approach. When piezoelectric Graphene Nanoribbon (GNR) is exposed to time varying light beam, ultrasonic waves are produced which propagate in the medium. At low frequencies, we observed oscillations of the ultrasonic observables, velocity change and attenuation which are characteristics of massless Dirac fermions in graphene. Exploiting this oscillatory behavior, we estimate graphenes electronic mobility to be around . Propagating ultrasonic waves can be amplified, depending on the electric field amplitude. Specifically, amplification occurs when drift velocity exceeds sound velocity. This scheme can be employed for efficient ultrasonic amplifier device operation.

Share and Cite:

M. Rabiu, S. Y. Mensah, S. S. Abukari, M. Amekpewu, B. Sefa-Ntiri and A. Twum, "Generation and Propagation of Ultrasonic Waves in Piezoelectric Graphene Nanoribbon," Open Journal of Acoustics, Vol. 3 No. 3A, 2013, pp. 38-42. doi: 10.4236/oja.2013.33A007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. L. White, “Amplification of Ultrasonic Waves in Piezoelectric Semiconductors,” Journal of Applied Physics, Vol. 33, No. 8, 1962, Article ID. 2547. doi:10.1063/1.1729015
[2] H. Hayakawa and M. Kikuchi, “Amplification of Ultrasonic waves under d.c. Operating Condition in InSb under Transverse Magnetic Field,” Applied Physics Letters, Vol. 12, No. 8, 1968, p. 251. doi:10.1063/1.1651978
[3] S. Narendar, D. Roy Mahapatra and S. Gopalakrishnan, “Ultrasonic Wave Characteristics of a Monolayer Graphene on Silicon Substrate,” Composite Structures, Vol. 93, 2011, pp. 1997-2009. doi:10.1016/j.compstruct.2011.02.023
[4] S. Chandratre and P. Sharma, “Coaxing Graphene to be Piezoelectric,” Applied Physics Letters Vol. 100, No. 2, 2012. Article ID: 023114. doi:10.1063/1.3676084
[5] B. Arash, Q. Wang and K. M. Liew, “Wave Propagation in Graphene Sheets with Nonlocal Elastic Theory via Finite Element Formulation,” Computer Methods in Applied Mechanics and Engineering, Vol. 1, 2012, No. 223-224, 2012, pp. 1-9.
[6] S. Narendar, D. Roy Mahapatra and S. Gopalakrishnan, “Investigation of the Effect of Nonlocal Scale on Ultrasonic Wave Dispersion Characteristics of a Monolayer Graphene,” Computational Materials Science, Vol. 49, No. 4, 2010, pp. 734-742. doi:10.1016/j.commatsci.2010.06.016
[7] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, “Ultrahigh Electron Mobility in Suspended Graphene,” Solid State Communications, Vol. 146, No. 9-10, 2008, pp. 351-355. doi:10.1016/j.ssc.2008.02.024
[8] V. Miseikis, J. E. Cunningham, K. Saeed, R. O. Rorke, and A. G. Davies, “Acoustically Induced Current Flow in Graphene,” Applied Physics Letters, Vol. 100, No. 13, 2012, Article ID. 133105. doi:10.1063/1.3697403
[9] M. A. Paalanen, R. L. Willett, P. B. Littlewood, R. R. Ruel, K. W. West, L. N. Pfeiffer and D. J. Bishop, “Rf Conductivity of a Two-Dimensional Electron System at Small Landau-Level Filling Factors,” Physical Review B, Vol. 45, No. 9, 1992, pp. 11342-11345. doi:10.1103/PhysRevB.45.11342
[10] S. Y. Mensah, N. G. Mensah, V. W. Elloh, G. K. Banini, F. Sam and F. K. A. Allotey, “Propagation of Ultrasonic Waves in Bulk Gallium Nitride (GaN) Semiconductor in the Presence of High-Frequency Electric Field,” Physica E: Low-Dimensional Systems and Nanostructures, Vol. 28, No. 4, 2005 pp. 500-506. doi:10.1016/j.physe.2005.05.050

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.