Conditioned Taste and Place Preferences Induced by Electrical Stimulation of the External Lateral Parabrachial Nucleus: A General Reinforcing Mechanism?


This study examined the stimulus specificity of external lateral parabrachial (LPBe) rewarding stimulation by using two identical learning procedures that may dissociate conditioned reinforcement to either the place or the flavor stimulus. Animals were presented with two distinct flavors in two different positions (left and right) that were varied throughout the experimental sessions. In the first experiment, LPBe stimulation was associated with one or other flavor, while in the second it was conditioned to one or other place in which these flavors were offered. The results show that, despite stimulus interferences, the animals develop specific conditioned preferences for the flavor stimuli (experiment 2A), and also for the place of their presentation (experiment 2B). These data are discussed in the context of brain reward systems and the biological constraints that characterize some learning modalities.

Share and Cite:

M. Simon, R. García and A. Puerto, "Conditioned Taste and Place Preferences Induced by Electrical Stimulation of the External Lateral Parabrachial Nucleus: A General Reinforcing Mechanism?," Journal of Behavioral and Brain Science, Vol. 3 No. 5, 2013, pp. 422-431. doi: 10.4236/jbbs.2013.35044.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. E. Fulwiler and C. B. Saper, “Subnuclear Organization of the Efferent Connections of the Parabrachial Nucleus in the Rat,” Brain Research, Vol. 319, No. 3, 1984, pp. 229-259.
[2] C. B. Halsell and S. P. Travers, “Anterior and Posterior Oral Cavity Responsive Neurons Are Differentially Distributed among Parabrachial Subnuclei in Rat,” Journal of Neurophysiology, Vol. 78, No. 2, 1997, pp. 920-938.
[3] S. Papas and A. V. Ferguson, “Electrophysiological Characterization of Reciprocal Connections between the Parabrachial Nucleus and the Area Postrema in the Rat,” Brain Research Bulletin, Vol. 24, No. 4, 1990, pp. 577-582. doi:10.1016/0361-9230(90)90162-S
[4] S. De Lacalle and C. R. Saper, “Calcitonin Gene-Related Peptide-Like Immunoreactivity Marks Putative Visceral Sensory Pathways in Human Brain,” Neuroscience, Vol. 100, No. 1, 2000, pp. 115-130. doi:10.1016/S0306-4522(00)00245-1
[5] H. Karimnamazi, S. P. Travers and J. B Travers, “Oral and Gastric Input to the Parabrachial Nucleus of the Rat,” Brain Research, Vol. 957, No. 2, 2002, pp. 193-206. doi:10.1016/S0006-8993(02)03438-8
[6] I. E. De Araujo, “Gustatory and Homeostatic Functions of the Rodent Parabrachial Nucleus,” Annals of the New York Academy of Sciences, Vol. 1170, 2009, pp. 383-391. doi:10.1111/j.1749-6632.2009.03923.x
[7] T. Yamamoto, M. Takemura, T. Inui, K. Torii, N. Maeda, M. Ohmoto, I. Matsumoto and K. Abe, “Functional Organization of the Rodent Parabrachial Nucleus,” Annals of the New York Academy of Sciences, Vol. 1170, 2009, pp. 378-382. doi:10.1111/j.1749-6632.2009.03883.x
[8] K. Hashimoto, K. Obata and H. Ogawa, “Characterization of parabrachial subnuclei in mice with regard to salt tastants: posible independence of taste relay from visceral processing,” Chemical Senses, Vol. 34, 2009, pp. 253-267. doi:10.1093/chemse/bjn085
[9] C. Mediavilla, F. Molina and A. Puerto, “The Role of the Lateral Parabrachial Nuclei in Concurrent and Sequential Taste Aversion Learning in Rats,” Experimental Brain Research, Vol. 134, No. 4, 2000, pp. 497-505. doi:10.1007/s002210000497
[10] C. Mediavilla, F. Molina and A. Puerto, “Effects of a Flavor-Placement Reversal Test after Different Modalities of Taste Aversion Learning,” Neurobiology of Learning and Memory, Vol. 76, No. 2, 2001, pp. 209-224. doi:10.1006/nlme.2000.3990
[11] M. A. Zafra, M. J. Simon, F. Molina and A. Puerto, “The Role of the External Lateral Parabrachial Subnucleus in Flavor Preferences Induced by Pre-Digested Food Administered Intragastrically,” Brain Research, Vol. 950, No. 1-2, 2002, pp. 155-164. doi:10.1016/S0006-8993(02)03032-9
[12] L. Wang, S. Cardin, V. Martinez, I. Tache and C. K. Lloyd, “Duodenal Loading with Glucose Induces Fos Expression in Rat Brain: Selective Blockade by Devazepide,” American Journal of Physiology, Vol. 277, No. 3, 1999, pp. R667-R674.
[13] T. Yamamoto and K. Sawa, “C-Fos-Like Immunoreactivity in the Brainstem Following Gastric Loads of Various Chemical Solutions in Rats,” Brain Research, Vol. 866, 2000, pp. 135-143. doi:10.1016/S0006-8993(00)02241-1
[14] T. Yamamoto and K. Sawa, “Comparison of c-Fos-Like Immunoreactivity in the Brainstem Following Intraoral and Intragastric Infusions of Chemical Solutions in Rats,” Brain Research, Vol. 866, No. 1-2, 2000, pp. 144-151. doi:10.1016/S0006-8993(00)02242-3
[15] B. H. Li and N. E. Rowland, “Effects of Vagotomy on Cholecystokinin and Dexfenfluramine-Induced Fos-Like Immunoreactivity in the Rat Brain,” Brain Research Bulletin, Vol. 37, No. 6, 1995, pp. 589-593. doi:10.1016/0361-9230(95)00045-G
[16] R. Trifunovic and S. Reilly, “Medial versus Lateral Parabrachial Nucleus Lesions in the Rat: Effects Cholecystokinin and D-Fenfluramine-Induced Anorexia,” Brain Research, Vol. 894, No. 2, 2001, pp. 288-296. doi:10.1016/S0006-8993(01)02037-6
[17] C. F. Elias, F. Kelly, C. E. Lee, R. S. Ahima, D. J. Drucker, C. B. Saper and J. K. Elmquist, “Chemical Characterization of Leptin-Activated Neurons in the Rat Brain,” Journal of Comparative Neurology, Vol. 423, No. 2, 2000, pp. 261-281. doi:10.1002/1096-9861(20000724)423:2<261::AID-CNE6>3.0.CO;2-6
[18] N. Sakai and T. Yamamoto, “Conditioned Taste Aversion and c-Fos Expression in the Rat Brainstem after Administration of Various USs,” Neuroreport, Vol. 8, No. 9-10, 1997, pp. 2215-2220. doi:10.1097/00001756-199707070-00025
[19] N. L. Chamberlin, A. Mansour, S. J. Watson and C. B. Saper, “Localization of Mu-Opioid Receptors on Amygdaloid Projection Neurons in the Parabrachial Nucleus of the Rat,” Brain Research, Vol. 827, No. 1-2, 1999, pp. 198-204. doi:10.1016/S0006-8993(99)01168-3
[20] M. J. Simon, R. García, M. A. Zafra, F. Molina and A. Puerto, “Learned Preferences Induced by Electrical Stimulation of a Food-Related Area of the Parabrachial Complex: Effects of Naloxone,” Neurobiology of Learning & Memory, Vol. 87, No. 3, 2007, pp. 332-342. doi:10.1016/j.nlm.2006.09.009
[21] M. J. Simon, F. Molina and A. Puerto, “Conditioned Place Preference But Not Rewarding Self-Stimulation after Electrical Activation of the External Lateral Parabrachial Nucleus,” Behavioral Brain Research, Vol. 205, No. 2, 2009, pp. 443-449. doi:10.1016/j.bbr.2009.07.028
[22] M. J. Simon, R. Garcia and A. Puerto, “Concurrent Stimulation-Induced Place Preference in Lateral Hypothalamus and Parabrachial Complex: Differential Effects of Naloxone,” Behavioral Brain Research, Vol. 225, No. 1, 2011, pp. 311-316. doi:10.1016/j.bbr.2011.07.029
[23] M. J. Simon, M. A. Zafra, F. Molina and A. Puerto, “Consistent Rewarding or Aversive Effects of the Electrical Stimulation of the Lateral Parabrachial Complex,” Behavioral Brain Research, Vol. 190, No. 1, 2008, pp. 67-73. doi:10.1016/j.bbr.2008.02.036
[24] T. Spiteri, G. Le Pape and A. Agmo, “What Is Learned during Place Preference Conditioning? A Comparison of Foodand Morphine-Induced Reward,” Psychobiology, Vol. 28, No. 3, 2000, pp. 367-382.
[25] L. A. Parker, “Taste Avoidance and Taste Aversion: Evidence for Two Different Processes,” Learning and Behavior, Vol. 31, No. 2, 2003, pp. 165-172. doi:10.3758/BF03195979
[26] J. Garcia, W. G. Hankins and K. W. Rusiniak, “Behavioral Regulation of the Milieu Interne in Man and Rat,” Science, Vol. 185, 1974, pp. 824-831. doi:10.1126/science.185.4154.824
[27] M. Domjan, “Pavlovian Conditioning: A Functional Perspective,” Annual Review of Psychology, Vol. 56, 2005, pp. 179-206. doi:10.1146/annurev.psych.55.090902.141409
[28] A. Bechara and D. Van der Kooy, “The Tegmental Pedunculopontine Nucleus: A Brain-Stem Output of the Limbic System Critical for the Conditioned Place Preferences Produced by Morphine and Amphetamine,” The Journal of Neuroscience, Vol. 9, No. 10, 1989, pp. 3400-3409.
[29] A. Bechara and D. Van der Kooy, “A Single Brain Stem Substrate Mediates the Motivational Effects of Both Opiates and Food in Nondeprived Rats But Not in Deprived rats,” Behavioral Neuroscience, Vol. 106, No. 2, 1992, pp. 351-363. doi:10.1037/0735-7044.106.2.351
[30] A. Bechara and D. Van der Kooy, “Lesions of the Tegmental Pedunculopontine Nucleus: Effects on the Locomotor Activity Induced by Morphine and Amphetamines,” Pharmacology, Biochemistry & Behavior, Vol. 42, 1992, pp. 9-18. doi:10.1016/0091-3057(92)90438-L
[31] A. Bechara, G. M. Martin, A. Pridgar and D. Van der Kooy, “The Parabrachial Nucleus: A Brain Stem Substrate Critical for Mediating the Aversive Motivational Effects of Morphine,” Behavioral Neuroscience, Vol. 107, No. 1, 1993, pp. 147-160. doi:10.1037/0735-7044.107.1.147
[32] T. V. Jaeger and D. Van der Kooy, “Morphine Acts in the Parabrachial Nucleus, a Pontine Viscerosensory Relay, to Produce Discriminative Stimulus Effects,” Psychopharmacology, Vol. 110, No. 1-2, 1993, pp. 76-84. doi:10.1007/BF02246953
[33] T. V. Jaeger and D. Van der Kooy, “Separate Neural Substrates Mediate the Motivating and Discriminative Properties of Morphine,” Behavioral Neuroscience, Vol. 110, No. 1, 1996, pp. 181-201. doi:10.1037/0735-7044.110.1.181
[34] K. D. Carr, D. O. Aleman, T. H. Bak and E. J. Simon, “Effects of Parabrachial Opioid Antagonism on Stimulation-Induced Feeding,” Brain Research, Vol. 545, No. 1-2, 1991, pp. 283-286. doi:10.1016/0006-8993(91)91298-F
[35] S. Moufid-Bellancourt, R. Razafimanalina and L. Velley, “Interaction between μ and κ Receptors Located in the Parabrachial Area in the Opioid Control of Preference Threshold for Saccharine: Modulatory Role of Lateral Hypothalamic Neurons,” Behavioral Pharmacology, Vol. 7, No. 8, 1996, pp. 798-809.
[36] T. D. Wolinsky, K. D. Carr, J. M. Hiller and E. J. Simon, “Chronic Food Restriction Alters μ and κ Opioid Receptor Binding in the Parabrachial Nucleus of the Rat: A Quantitative Autoradiographic Study,” Brain Research, Vol. 706, No. 2, 1996, pp. 333-336. doi:10.1016/0006-8993(95)01337-7
[37] J. D. Wilson, D. M. Nicklous, V. J. Aloyo and K. J. Simansky, “Peptides that Regulate Food Intake. An Orexigenic Role for μ-Opioid Receptors in the Lateral Parabrachial Nucleus,” American Journal of Physiology, Vol. 285, No. 5, 2003, pp. R1055-R1065.
[38] M. Schneider, V. Heise and R. Spanagel, “Differential Involvement of the Opioid Receptor Antagonist Naloxone in Motivational and Hedonic Aspects of Reward,” Behavioral Brain Research, Vol. 208, No. 2, 2010, pp. 466-472. doi:10.1016/j.bbr.2009.12.013
[39] L. Parker, A. Failor and K. Weidman, “Conditioned Preferences in the Rat with an Unnatural Need State: Morphine Withdrawal,” Journal of Comparative Physiological Psychology, Vol. 82, No. 2, 1973, pp. 294-300. doi:10.1037/h0033921
[40] G. Paxinos and C. Watson, “The Rat Brain in Stereotaxic Coordinates,” 4th Edition, Academic Press, San Diego, 2005.
[41] C. Mediavilla, F. Molina and A. Puerto, “Bilateral Lesions in the Cerebellar Interpositus-Dentate Region Impair Taste Aversion Learning in Rats,” Physiology & Behavior, Vol. 65, No. 1, 1998, pp. 25-33. doi:10.1016/S0031-9384(98)00083-3
[42] J. D. Salamone, “The Involvement of Nucleus Accumbens Dopamine in Appetitive and Aversive Motivation,” Behavioral Brain Research, Vol. 61, No. 2, 1994, pp. 117-133. doi:10.1016/0166-4328(94)90153-8
[43] D. Small, M. D. Gregory, Y. E. Mark, D. Gitelman, M. M. Mesulam and T. Parrish, “Dissociation of Neural Representation of Intensity and Affective Valuation in Human Gestation,” Neuron, Vol. 39, No. 4, 2001, pp. 701-711. doi:10.1016/S0896-6273(03)00467-7
[44] S. M. Reynolds and K. C. Berridge, “Positive and Negative Motivation in Nucleus Accumbens Shell: Bivalent Rostrocaudal Gradients for GABA-Elicitated Eating, Taste ‘Liking’/‘Disliking’ Reactions, Place Preference/ Avoidance, and Fear,” Journal of Neuroscience, Vol. 22, No. 16, 2002, pp. 7308-7320.
[45] J. B. Rank, “Which Elements Are Excited in Electrical Stimulation of Mammalian Central Nervous System: A Review,” Brain Research, Vol. 98, No. 3, 1975, pp. 417-440. doi:10.1016/0006-8993(75)90364-9
[46] J. S. Yeomans, “Principles of Brain Stimulation,” Oxford University Press, New York, 1990.
[47] R. D. Hawkins, P. L. Roll, A. Puerto and J. S. Yeomans, “Refractory Periods of Neurons Mediating StimulationElicited Eating and Brain Stimulation Reward: Interval Scale Measurement and a Test of a Model of Neural Integration,” Behavioral Neuroscience, Vol. 97, No. 3, 1983, pp. 416-432. doi:10.1037/0735-7044.97.3.416
[48] A. Gratton and R. A Wise, “Brain Stimulation Reward in the Lateral Hypothalamic Medial Forebrain Bundle: Mapping of Bourdaries and Homogeneity,” Brain Research, Vol. 274, No. 1, 1983, pp. 25-30. doi:10.1016/0006-8993(83)90518-8
[49] D. J. Mayer, T. L. Wolfle, H. Akil, B. Carder and J. C. Liebeskind, “Analgesia from Electrical Stimulation in the Brainstem of the Rat,” Science, Vol. 174, No. 4016, 1971, pp. 1351-1354. doi:10.1126/science.174.4016.1351
[50] W. A. Prado and M. H Roberts, “An Assessment of the Antinociceptive and Aversive Effects of Stimulating Identified Sites in the Rat Brain,” Brain Research, Vol. 340, No. 2, 1985, pp. 219-228. doi:10.1016/0006-8993(85)90917-5
[51] T. Yamamoto, T. Shimura, N. Sakai and N. Ozaki, “Representation of Hedonics and Quality of Taste Stimuli in the Parabrachial Nucleus of the Rat,” Physiology & Behavior, Vol. 56, No. 6, 1994, pp. 1197-1202. doi:10.1016/0031-9384(94)90366-2
[52] C. Arnold and A. Agmo, “The Importance of the Stomach for Conditioned Place Preference Produced by Drinking Sucrose in Rats,” Psychobiology, Vol. 27, No. 4, 1999, pp. 541-546.
[53] T. L. Stefurak and D. van der Kooy, “Saccharin’s Rewarding, Conditioned Reinforcing, and Memory-Improving Properties: Mediation by Isomorphic or Independent Processes?” Behavioral Neuroscience, Vol. 106, No. 1, 1992, pp. 125-139. doi:10.1037/0735-7044.106.1.125
[54] L. Schwabe, O. T. Wolf and M. S. Oitzl, “Memory Formation under Stress: Quantity and Quality,” Neuroscience & Biobehavioral Reviews, Vol. 34, No. 4, 2010, pp. 584-591. doi:10.1016/j.neubiorev.2009.11.015
[55] L. Schwabe, O. T. Wolf and A. Dickinson, “Stress, Habits, and Drug Addiction: A Psychoneuroendocrinological Perspective,” Experimental and Clinical Psychopharmacology, Vol. 19, No. 1, 2011, pp. 53-63. doi:10.1037/a0022212
[56] L. Schwabe, M. Joels, B. Roozendaal, O. T. Wolf and M. S. Oitzl, “Stress Effects on Memory: An Update and Integration,” Neuroscience & Biobehavioral Reviews, Vol. 36, No. 7, 2012, pp. 1740-1749. doi:10.1016/j.neubiorev.2011.07.002
[57] A. Chung, S. K. Barot, J. J. Kim and I. L. Bernstein, “Biologically Predisposed Learning and Selective Associations in Amygdalar Neurons,” Learning & Memory, Vol. 18, No. 6, 2011, pp. 371-374. doi:10.1101/lm.2053711
[58] L. A. Parker, “Rewarding Drugs Produce Taste Avoidance, but Not Taste Aversion,” Neuroscience & Biobehavioral Reviews, Vol. 19, No. 1, 1995, pp. 143-151. doi:10.1016/0149-7634(94)00028-Y
[59] L. A. Parker, J. A. Cyr, A. N. Santi and P. D. Burton, “The Aversive Properties of Acute Morphine Dependence Persist 48 h after a Single Exposure to Morphine. Evaluation by Taste and Place Conditioning,” Pharmacology, Biochemistry & Behavior, Vol. 72, No. 1-2, 2002, pp. 87-92. doi:10.1016/S0091-3057(01)00724-9
[60] S. Pecina, K. C. Berridge and L. A. Parker, “Pimozide Does Not Shift Palatability: Separation of Anhedonia from Sensoriomotor Suppression by Taste Reactivity,” Pharmacology, Biochemistry & Behavior, Vol. 58, No. 3, 2002, pp. 801-811. doi:10.1016/S0091-3057(97)00044-0
[61] R. Spanagel, A. Herz and T. S. Shippenberg, “Opposing Tonically Active Endogenous Opioid Systems Modulate the Mesolimbic Dopaminergic Pathway,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, No. 6, 1992, pp. 2046-2050. doi:10.1073/pnas.89.6.2046
[62] H. B. Gutstein, J. L. Thome, J. L. Fine, S. J. Watson and H Akil, “Pattern of c-Fos mRNA Induction in Rat Brain by Acute Morphine,” Canadian Journal of Physiology and Pharmacology, Vol. 76, No. 3, 1998, pp. 294-303. doi:10.1139/y98-027
[63] S. D. Grabus, J. R., Glowa and A. L. Riley, “Morphineand Cocaine-Induced c-Fos Levels in Lewis and Fischer Rat Strains,” Brain Research, Vol. 998, No. 1, 2004, pp. 20-28. doi:10.1016/j.brainres.2003.11.007
[64] A. H. Soderpalm and K. C. Berridge, “The Hedonic Impact and Intake of Food Are Increased by Midazolam Microinjection in the Parabrachial Nucleus,” Brain Research, Vol. 877, No. 2, 2000, pp. 288-297. doi:10.1016/S0006-8993(00)02691-3
[65] J. P. Schroeder and M. G. Packard, “Differential Effects of Intra-Amygdala Lidocaine Infusion on Memory Consolidation and Expression of a Food Conditioned Place Preference,” Psychobiology, Vol. 28, No. 4, 2000, pp. 486-491.
[66] S. P. Garcia-Horsman, A. Agmo and R. G. Paredes, “Infusions of Naloxone into the Medial Preoptic Area, Ventromedial Nucleus of the Hypothalamus, and Amygdala Block Conditioned Place Preference Induced by Paced Mating Behavior,” Hormones & Behavior, Vol. 54, No. 5, 2008, pp. 709-716. doi:10.1016/j.yhbeh.2008.07.011
[67] G. L. Edwards and R. C. Ritter, “Lateral Parabrachial Lesions Attenuate Ingestive Effects of Area Postrema Lesions,” American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, Vol. 256, No. 2, 1989, pp. R306-R312.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.