[1]
|
Dollberg, S., Demarini, S., Donovan, E.F. and Hoath, S.B. (2000) Maturation of thermal capabilities in preterm infants. Journal of Perinatology, 17, 47-51.
|
[2]
|
Glass, L., Silverman, W.A. and Sinclair, J.C. (1968) Effect of thermal environment on cold resistance and growth of small infants after the first week of life. Pediatrics, 41, 1033-1046.
|
[3]
|
Thomas, K.A. and Burr, R. (1999) Preterm infant thermal care: Differing thermal environments produced by air versus skin servo-control incubators. Journal of Perinatology, 19, 264-270.
|
[4]
|
Chessex, P., Blovet, S. and Vaucher J. (1988) Environmental control in very low birth weight infants (less than 1000 grams) cared for in double walled incubators. Journal of Pediatrics, 113, 373-380.
|
[5]
|
Heim, T. (1981) Homeothermy and its metabolic cost. In: Davis and Dobbing, Eds., Scientific Foundations of Paediatrics, Heinemann, London, 91-128.
|
[6]
|
Richardson, D.K., Shah, B.L., Frantz, I.D., Bednarek, F., Rubin, L.P. and McCormick, M.C. (1999) Perinatal risk and severity of illness in newborns at 6 neonatal intensive care units. The American Journal of the Medical Sciences, 89, 511-516.
|
[7]
|
Sinclair, J.C. (2008) Servo-control for maintaining abdominal skin temperature at 361C in low birth weight infants. Cochrane Database of Systematic Reviews, 2, Article ID: CD001074.
|
[8]
|
Buetow, K.C. and Klein, S.W. (1964) Effect of maintenance of “normal” skin temperature on survival of infants of low birth weight. Pediatrics, 34, 163-170.
|
[9]
|
Day, R.L., Caliguiri, L., Kamenski, C. and Ehrlich, F. (1964) Body temperature and survival of premature infants. Pediatrics, 34, 171-181.
|
[10]
|
World Health Organization (2008) Thermal protection of the newborn. A practical guide WHO. Department of Reproductive Health and Research (RHR), Geneva.
|
[11]
|
Décima, P., Dégrugilliers, L., Delanaud, S., Stéphan-Blanchard, E., Vanhée, J.L. and Libert, J.P. (2012) Design of a software for assessing thermoneutrality in closed incubators for preterm neonates (PRETHERM project). IRBM, 33, 48-54.
|
[12]
|
Chessex, P., Reichman, B.L., Verellen, G.J., Putet, G., Smith, J.M., Heim, T. and Swyer, P.R. (1981) Influence of postnatal age, energy intake, and weight gain on energy metabolism in the very low-birth-weight infant. Journal of Pediatrics, 99, 761-766.
|
[13]
|
Narendran, V. and Hoath, S.B. (1999) Thermal management of the low birth weight infant: A cornerstone of neonatology. Journal of Pediatrics, 134, 529-531.
|
[14]
|
Graven, S.N., Bowen, F.W., Brooten, D., Eaton, A., Graven, M.N., Hack, M., Hall, L.A., Hansen, N., Hurt, H., Kavalhuna, R., et al. (1992) The high-risk infant environment. Part 1. The role of the neonatal intensive care unit in the outcome of highrisk infants. Journal of Perinatology, 12, 164-172.
|
[15]
|
Deguines, C., Décima, P., Pelletier, A., Dégrugilliers, L., Ghyselen, L. and Tourneux, P. (2012) Variations in incubator temperature and humidity management: A survey of current practice. Acta Paediatrica, 101, 230-235.
|
[16]
|
Ducker, D.A., Lyon, A.J., Roussel, R.R., Bass, C.A. and Mc Intosh, N. (1985) Incubator temperture control on the very-low-birth-weight infants. Archives of Disease in Childhood, 60, 902-907.
|
[17]
|
Bell, E.F. and Rios, G.R. (1983) Air versus skin temperature servocontrol of infant incubators. Journal of Pediatrics, 103, 954-959.
|
[18]
|
Perlstein, P.H., Edwards, N.K. and Sutherland, J.M. (1970) Apnea in premature infants and incubator-air-temperature changes. The New England Journal of Medicine, 282, 461-466.
|
[19]
|
Thomas, K.A. (2003) Preterm infant thermal responses to caregiving differ by incubator control mode. Journal of Perinatology, 23, 640-645.
|
[20]
|
Deguines, C., Dégrugilliers, L., Ghyselen, L., Chardon, K., Bach, V. and Tourneux, P. (2013) Impact of nursing care on temperature environment in preterm newborns nursed in closed convective incubators. Acta Paediatrica, 102, e96-e101.
|