In vitro differentiation of human umbilical cord-derived mesenchymal stem cells into CD34+ cells via CD34 antibody


CD34+cells differentiated from mesenchymal stem cells (MSCs) have a strong biological function in cardiovascular regeneration. However, the molecular mechanisms of and the methods to improve the CD34+ cell differentiation from MSCs, especially from human MSCs (hUC-MSCs) are still unclear. In the current study, the effect of CD34 antibody on the CD34+ cell differentiation from human umbilical cord (UC)-derived MSCs (hUC-MSCs) is determined. The results have demonstrated that the expression of cd34 protein is significantly increased in hUC-MSCs treated with CD34 antibody. In addition, the cell proliferation is increased in hUC-MSCs after treatment with CD34 antibody. Moreover, the expression of PI3K, AKT, p-AKT proteins, which are signaling molecules related to stem cell differentiation, is increased by CD34 antibody. The results suggest that CD34 antibody could promote the differentiation of hUC-MSCs into CD34+ cells and PI3K/AKT may be involved in this important process.

Share and Cite:

Guo, S. , Guo, L. , Sun, M. , Ma, W. , Lu, Y. and Liu, Y. (2013) In vitro differentiation of human umbilical cord-derived mesenchymal stem cells into CD34+ cells via CD34 antibody. Journal of Biomedical Science and Engineering, 6, 53-58. doi: 10.4236/jbise.2013.68A1005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Qiu, X., Sun, C., Yu, W., Lin, H., Sun, Z., Chen, Y., Wang, R. and Dai, Y. (2012) Combined strategy of mesenchymal stem cell injection with vascular endothelial growth factor gene therapy for the treatment of diabetes-associated erectile dysfunction. Journal of Andrology, 33, 37-44. doi:10.2164/jandrol.110.012666
[2] Radhakrishnan, V., Muthurangan, M., May, A.-N., Balamuthu, K., Abdullah, A., Nehad, M.A. (2012) In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells. BMC Developmental Biology, 12, 7. doi:10.1186/1471-213X-12-7
[3] Uccelli, A., Moretta, L. and Pistoia, V. (2008) Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8, 726-736. doi:10.1038/nri2395
[4] Oswald, J., Boxberger, S., Jorgensen, B., Feldmann, S., Ehninger, G., Bornhauser, M. and Werner, C. (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 22, 377-384. doi:10.1634/stemcells.22-3-377
[5] Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143-147. doi:10.1126/science.284.5411.143
[6] Lian, Q., Zhang, Y., Zhang, J., Zhang, H.K., Wu, X., Lam, F.F., Kang, S., Xia, J.C., Lai, W.H., Au, K.W., Chow, Y.Y., Siu, C.W., Lee, C.N. and Tse, H.F. (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation, 121, 1113-1123. doi:10.1161/CIRCULATIONAHA.109.898312
[7] Liu, Z.J., Zhuge, Y. and Velazquez, O.C. (2009) Trafcking and differentiation of mesenchymalfi stem cells. Journal of Cellular Biochemistry, 106, 984-991. doi:10.1002/jcb.22091
[8] Qu, Z.G., Guo, L.B., Fang, G.J., Cui, Z.H., Guo, S.N. and Liu, Y. (2012) Biological characteristics and effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rats. Cell Biochemistry and Biophysics, 63, 171-181. doi:10.1007/s12013-012-9354-1
[9] Timmermans, F., Van Hauwermeiren, F., De Smedt, M., Raedt, R., Plasschaert, F., De Buyzere, M.L., Gillebert, T.C., Plum, J. and Vandekerckhove, B. (2007) Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arteriosclerosis, Thrombosis, and Vascular Biology, 7, 1572-1579. doi:10.1161/ATVBAHA.107.144972
[10] Zhang, Y., Fisher, N., Newey, S.E., Smythe, J., Tatton, L., Tsaknakis, G., Forde, S.P., Carpenter, L., Athanassopoulos, T., Hale, S.J., Ferguson, D.J., Tyler, M.P. and Watt, S.M. (2009) The impact of proliferative potential of umbilical cord-derived endothelial progenitor cells and hypoxia on vascular tubule formation in vitro. Stem Cells and Development, 18, 359-375. doi:10.1089/scd.2008.0071
[11] Wu, K.H., Sheu, J.N., Wu, H.P., Tsai, C., Sieber, M., Peng, C.T. and Chao, Y.H. (2013) Cotransplantation of umbilical cord-derived mesenchymal stem cells promote hematopoietic engraftment in cord blood transplantation: A pilot study. Transplantation, 95, 773-777. doi:10.1097/TP.0b013e31827a93dd
[12] Fan, C.G., Zhang, Q.J. and Zhou, J.R. (2011) Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cells and Development, 7, 195-207. doi:10.1007/s12015-010-9168-8
[13] Bayat, H., Fathi, F., Peyrovi, H. and Mowla, S.J. (2013) Evaluating the expression of self-renewal genes in human endothelial progenitor cells. Cell Journal, 14, 298-305.
[14] Cheng, C.C., Chang, S.J., Chueh, Y.N., Huang, T.S., Huang, P.H., Cheng, S.M., Tsai, T.N., Chen, J.W. and Wang, H.W. (2013) Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics, 15, 14-182.
[15] Stuart, J., Smith, Hanna, T., Jennifer, H.W., Donald, C.M., James, L., Beth, C. and Richard, G.G. (2012) CD105 (Endoglin) exerts prognostic effects via its role in the microvascular niche of paediatric high grade glioma. Acta Neuropathologica, 124, 99-110. doi:10.1007/s00401-012-0952-1
[16] Jason, D.R., Rajendra, S.-M., Matthew, P.B., Steven, M.J., Lesley, D., Deepak, A.R., Tai, Y., Tamar, L.M., Ani, N., Brooks, U., Narutoshi, H., Toshiharu, S., Saltzman, W.M., Edward, S., Themis, R.K., Jordan, S.P., Christopher, K.B. (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Academy of Sciences of the USA, 107, 4669-4674.
[17] Bellacosa, A., Kumar, C.C., Di Cristofano, A. and Testa, J.R. (2005) Activation of AKT kinases in cancer: Implications for therapeutic targeting. Advanced Cancer Research, 94, 29-86. doi:10.1016/S0065-230X(05)94002-5
[18] Boomsma, R.A. and Geenen, D.L. (2012) Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One, 7, e35685. doi:10.1371/journal.pone.0035685

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.