Autonomic Mechanisms of Emotional Reactivity and Regulation


The ability to perceive and regulate our emotions appropriately is essential for social behavior. Our subjective emotional states to changing external cues are accompanied by physiological changes in heart rate variability (HRV), which is regulated by the sympathetic and parasympathetic branches of the autonomic nervous systems (ANS). In this pilot study, we sought to elucidate the autonomic basis of emotional reactivity and regulation in response to ecologically-valid emotional stimuli—presented in the form of filmclips—in healthy subjects. Subjects watched a series of videos, validated to elicit feelings of amusement, sexual amusement, sadness, fear, and disgust. Subjects were also asked to regulate the outward expression of their response to disgust by suppressing or amplifying it when instructed. Electrodes placed on the torso measured cardiac and respiratory signals, which were processed to compute HRV, which when analyzed with the concurrent respiratory signal calculates measures of parasympathetic activity (RFA, Respiratory Frequency Area, from higher frequencies) and sympathetic activity (LFA, Low Frequency Area, from lower frequencies). Fluctuations in LFA and RFA were computed by the coefficient of variation, and the intensity of the emotional response to the film-clips was captured via questionnaires. Our results suggest that in healthy individuals, higher intensities of subjective emotional experience, both positive (e.g., amusement) and negative (e.g., amplified disgust) elicit higher LFA (sympathetic) responses, whereas emotional regulation is mediated primarily by fluctuations in RFA (parasympathetic) activity. Furthermore, correlations between emotional intensity and components of HRV suggest that higher positive or lower negative emotional states may increase the capacity for emotional regulation via modulation of the parasympathetic component. Our results suggest that a sense of humor might facilitate emotional control.

Share and Cite:

Uy, C. , Jeffrey, I. , Wilson, M. , Aluru, V. , Madan, A. , Lu, Y. & Raghavan, P. (2013). Autonomic Mechanisms of Emotional Reactivity and Regulation. Psychology, 4, 669-675. doi: 10.4236/psych.2013.48095.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Akselrod, S., Gordon, D. et al. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 213, 220-222. doi:10.1126/science.6166045
[2] ANSAR Medical Technologies (2005). The ANX version 3.0 autonomic nervous system monitor user’s operations manual. ANSAR Medical Technologies, Inc., 1-20.
[3] Appelhans, B., & Luecken L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229-240. doi:10.1037/1089-2680.10.3.229
[4] Appelhans, B. M., & Luecken, L. J. (2008). Heart rate variability and pain: Associations of two interrelated homeostatic processes. Biological Psychology, 77, 174-182. doi:10.1016/j.biopsycho.2007.10.004
[5] Aupperle, R. L., Allard, C. B. et al. (2012). Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Archives of General Psychiatry, 69, 360-371. doi:10.1001/archgenpsychiatry.2011.1539
[6] Aysin, B., & Aysin, E. (2006). Effect of respiration in heart rate variability (HRV) analysis. Conference Proceedings—IEEE Engineering in Medicine and Biology Society, 1, 1776-1779. doi:10.1109/IEMBS.2006.260773
[7] Bal, E., Harden, E. et al. (2010). Emotion recognition in children with autism spectrum disorders: Relations to eye gaze and autonomic state. Journal of Autism and Developmental Disorders, 40, 358-370. doi:10.1007/s10803-009-0884-3
[8] Bazhenova, O. V., Plonskaia, O. et al. (2001). Vagal reactivity and affective adjustment in infants during interaction challenges. Child Development, 72, 1314-1326. doi:10.1111/1467-8624.00350
[9] Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68, 988-1001. doi:10.1016/S0025-6196(12)62272-1
[10] Berntson, G. G., Cacioppo, J. T. et al. (1991). Autonomic determinism: The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98, 459-487. doi:10.1037/0033-295X.98.4.459
[11] Bornhofen, C., & McDonald, S. (2008). Emotion perception deficits following traumatic brain injury: A review of the evidence and rationale for intervention. Journal of the International Neuropsychological Society, 14, 511-525. doi:10.1017/S1355617708080703
[12] Colombo, J., Shoemaker, W. C. et al. (2008). Noninvasive monitoring of the autonomic nervous system and hemodynamics of patients with blunt and penetrating trauma. Journal of Trauma, 65, 1364-1373. doi:10.1097/TA.0b013e31818cc307
[13] de Sousa, A., McDonald, S. et al. (2012). Changes in emotional empathy, affective responsivity, and behavior following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34, 606-623. doi:10.1080/13803395.2012.667067
[14] Fredrickson, B. L., & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition & Emotion, 12, 191-220. doi:10.1080/026999398379718
[15] Fredrickson, B. L., Mancuso, R. A. et al. (2000). The undoing effect of positive emotions. Motivation and Emotion, 24, 237-258. doi:10.1023/A:1010796329158
[16] Gerlach, A. L., Wilhelm, F. H. et al. (2003). Embarrassment and social phobia: The role of parasympathetic activation. Journal of Anxiety Disorders, 17, 197-210. doi:10.1016/S0887-6185(02)00197-4
[17] Giuliani, N. R., McRae, K. et al. (2008). The up- and down-regulation of amusement: Experiential, behavioral, and autonomic consequences. Emotion, 8, 714-719. doi:10.1037/a0013236
[18] Gross, J. J., & Levenson, R. W. (1993). Emotional suppression: Physiology, self-report, and expressive behavior. Journal of Personality and Social Psychology, 64, 970-986. doi:10.1037/0022-3514.64.6.970
[19] Gross, J. J., & Levenson, R. W. (1997). Hiding feelings: The acute effects of inhibiting negative and positive emotion. Journal of Abnormal Psychology, 106, 95-103. doi:10.1037/0021-843X.106.1.95
[20] Hammond, F. M., Davis, C. S. et al. (2012). Relational dimension of irritability following traumatic brain injury: A qualitative analysis. Brain Injury, 26, 1287-1296. doi:10.3109/02699052.2012.706352
[21] Healy, B. (2010). The effect of attentional control and heart-period variability on negative affect and trait anxiety. Journal of General Psychology, 137, 140-150. doi:10.1080/00221301003645079
[22] Izard, C., Fine, S. et al. (2001). Emotion knowledge as a predictor of social behavior and academic competence in children at risk. Psychological Science, 12, 18-23. doi:10.1111/1467-9280.00304
[23] Levenson, R. W., Ekman, P. et al. (1992). Emotion and autonomic nervous system activity in the Minangkabau of west Sumatra. Journal of Personality and Social Psychology, 62, 972-988. doi:10.1037/0022-3514.62.6.972
[24] Mauss, I. B., Levenson, R. W. et al. (2005). The tie that binds? Coherence among emotion experience, behavior, and physiology. Emotion, 5, 175-190. doi:10.1037/1528-3542.5.2.175
[25] McDonald, S., Bornhofen, C. et al. (2009). Addressing deficits in emotion recognition after severe traumatic brain injury: The role of focused attention and mimicry. Neuropsychological Rehabilitation, 19, 321-339. doi:10.1080/09602010802193989
[26] Neumann, S. A., & Waldstein, S. R. (2001). Similar patterns of cardiovascular response during emotional activation as a function of affective valence and arousal and gender. Journal of Psychosomatic Research, 50, 245-253. doi:10.1016/S0022-3999(01)00198-2
[27] Porges, S. W. (1995). Cardiac vagal tone: A physiological index of stress. Neuroscience & Biobehavioral Reviews, 19, 225-233. doi:10.1016/0149-7634(94)00066-A
[28] Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32, 301-318. doi:10.1111/j.1469-8986.1995.tb01213.x
[29] Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116-143. doi:10.1016/j.biopsycho.2006.06.009
[30] Pumprla, J., Howorka, K. et al. (2002). Functional assessment of heart rate variability: Physiological basis and practical applications. International Journal of Cardiology, 84, 1-14. doi:10.1016/S0167-5273(02)00057-8
[31] Rottenberg, J., Ray, R. D. et al. (2007). Emotion elicitation using film. The handbook of motion elicitation and assessment. London: Oxford University Press.
[32] Sakuragi, S., Sugiyama, Y. et al. (2002). Effects of laughing and weeping on mood and heart rate variability. Journal of Physiological Anthropology and Applied Human Science, 21, 159-165. doi:10.2114/jpa.21.159
[33] Schaefer, A., Nils, F. et al. (2010). Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cognition & Emotion, 24, 1153-1172. doi:10.1080/02699930903274322
[34] Shiota, M. N., Neufeld, S. L. et al. (2011). Feeling good: Autonomic nervous system responding in five positive emotions. Emotion, 11, 1368-1378. doi:10.1037/a0024278
[35] Sternbach, R. A. (1962). Assessing differential autonomic patterns in emotions. Journal of Psychosomatic Research, 6, 87-91. doi:10.1016/0022-3999(62)90059-4
[36] Stifter, C. A., Dollar, J. M. et al. (2011). Temperament and emotion regulation: The role of autonomic nervous system reactivity. Developmental Psychobiology, 53, 266-279. doi:10.1002/dev.20519
[37] Thurman, D. J., Alverson, C. et al. (1999). Traumatic brain injury in the United States: A public health perspective. Journal of Head Trauma Rehabilitation, 14, 602-615. doi:10.1097/00001199-199912000-00009
[38] Zuckerman, M., Klorman, R. et al. (1981). Facial, autonomic, and subjective components of emotion: The facial feedback hypothesis versus externalizer-internalizer distinction. Journal of Personality and Social Psychology, 41, 929-944. doi:10.1037/0022-3514.41.5.929

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.