Nonlinear Optical Properties of Two Different Nanoassemblies of Polydiacetylene (PDA): PDA Nanovesicles and PDA Nanocrystals


We have synthesized and characterized two different nanoassemblies of polydiacetylene (PDA), PDA nanovesicles and PDA nanocrystals, in order to study the influence of chain packing geometry of the two nanoassemblies on their third order nonlinear optical properties. The second molecular hyperpolarizability γ(-ω,ω,-ω,ω)of the two samples was investigated by antiresonant ring interferometric nonlinear spectroscopic (ARINS) technique using femtosecond modelocked Ti:sapphire laser in the spectral range of 720 nm - 820 nm. The observed spectral dispersion of γ has been explained in the framework of three-essential states model involving the ground state, a one-photon excited state and a two-photon excited state. The observed optical nonlinearity has been correlated with the electronic structure of the two samples. The energy of two-photon state, transition dipole moments and line width of the transitions have been estimated. Our studies show that the arrangement of polymer chains in polydiacetylene nanocrystals is more favorable for higher nonlinearity.

Share and Cite:

B. Bhushan, T. Kundu and B. Singh, "Nonlinear Optical Properties of Two Different Nanoassemblies of Polydiacetylene (PDA): PDA Nanovesicles and PDA Nanocrystals," Optics and Photonics Journal, Vol. 3 No. 4, 2013, pp. 278-286. doi: 10.4236/opj.2013.34042.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L W. Spannring and H. Bassler, “Electron Injection into a Polydiacetylene Crystal (DCH): Determination of Electron Mobility and Energy Level Spectrum,” Chemical Physics Letters, Vol. 84, No. 1, 1981, pp. 54-58. doi:10.1016/0009-2614(81)85368-7
[2] D. Bloor, F. H. Preston and D. J. Ando, “Optical Properties of Fully and Partially Polymerized bis (p-Toluene Sulphonate) Diacetylene Crystals,” Chemical Physics Letters, Vol. 38, No. 1, 1976, pp. 33-36. doi:10.1016/0009-2614(76)80249-7
[3] C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman and R. R. Chance, “Optical Nonlinearities in One-Dimensional Conjugated Polymer Crystals,” Physical Review Letters, Vol. 36, No. 16, 1976, pp. 956-959. doi:10.1103/PhysRevLett.36.956
[4] J. Bolger, T. G. Harvey, W. Ji, A. K. Kar, S. Molyneux, B. S. Wherrett, D. Bloor and P. Norman, “Near-Resonant Third-Order Optical Nonlinearities in P-Toluene Sulfonate Polydiacetylene,” Journal of Optical Society of America B, Vol. 9, No. 9, 1992, pp. 1552-1557. doi:10.1364/JOSAB.9.001552
[5] G. M. Carter, J. V. Hryniewicz, M. K. Thakur, Y. J. Chen and S. E. Meyler, “Nonlinear Optical Processes in Polydiacetylene Measured with Femtosecond Duration Laser Pulse,” Applied Physics Letters, Vol. 49, No. 16, 1986, pp. 998-1000. doi:10.1063/1.97470
[6] G. M. Carter, M. K. Thakur, Y. J. Chen and J. V. Hryniewicz, “Time and Wavelength Resolved Nonlinear Optical Spectroscopy of a Polydiacetylene in the Solid State Using Picosecond Dye Laser Pulses,” Applied Physics Letters, Vol. 47, No. 5, 1985, pp. 457-459. doi:10.1063/1.96146
[7] G. Banfi, D. Fortusini, P. Dainesi, D. Grando and S. Sottini, “Two-Photon Absorption Spectrum of 3-Butoxycarbonylmethylurethane Polydiacetylene Thin Films,” Journal of Chemical Physics, Vol. 108, No. 10, 1998, pp. 4319-4323. doi:10.1063/1.475832
[8] D. N. Rao, P. Chopra, S. K. Ghoshal, J. Swiatkiewicz and P. N. Prasad, “Third-Order Nonlinear Optical Interaction and Conformational Transition in poly-4-BCMU Polydiacetylene Studied by Picosecond and Subpicosecond Degenerate Four Wave Mixing,” Journal of Chemical Physics, Vol. 84, No. 12, 1986, pp. 7049-7050. doi:10.1063/1.450627
[9] W. E. Torruellas, K. B. Rochford, R. Zanoni, S. Aramaki and G. I. Stegeman, “The Cubic Susceptibility Dispersion of poly (4-BCMU) Thin Films: Third Harmonic Generation and Two-Photon Absorption Measurements,” Optics Communications, Vol. 82, No. 1-2, 1991, pp. 94-100. .doi:10.1016/0030-4018(91)90198-M
[10] S. Molyneux, A. K. Kar, B. S. Wherrett, T. L. Axon and D. Bloor, “Near-Resonant Refractive Nonlinearity in Polydiacetylene 9-BCMU Thin Films,” Optics Letters, Vol. 18, No. 24, 1993, pp. 2093-2095. doi:10.1364/OL.18.002093
[11] J. Tao, H. Jiang, J. Wang, G. Zou and Q. Zhang, “Tunable Nonlinear Optical Properties of PDA/Ag Composite Vesicles Based on Reversible Host-Guest Interaction,” Chemical Physics Letters, Vol. 539-540, 2012, pp. 70-73. doi:10.1016/j.cplett.2012.04.049
[12] X. Chen, J. Tao, G. Zou, W. Su, Q. J. Zhang and P. Wang, “Optical Nonlinearity Enhancement in Cros-Linked Polydiacetylene (PDA) Supramolecules Composited with Nanometer-Size Silver,” Current Nanoscience, Vol. 7, No. 4, 2011, pp. 556-562. doi:10.2174/157341311796196790
[13] X. Chen, J. Tao, G. Zou, W. Su, Q. J. Zhang and P. Wang, “Thermosensitive Silver/Polydiacetylene Nanocrystals with Tunable Nonlinear Optical Properties,” ChemPhysChem, Vol. 11, No. 17, 2010, pp. 3599-3603. doi:10.1002/cphc.201000416
[14] X. Chen, G. Zou, Y. Deng and Q. Zhang, “Synthesis and Nonlinear Optical Properties of Nanometer-Size Silver Coated Polydiacetylene Composite Vesicles,” Nanotechnology, Vol. 19, No. 19, 2008, pp. 195703-195703. doi:10.1088/0957-4484/19/19/195703
[15] P. Vasa, B. P. Singh, P. Taneja and P. Ayyub, “Antiresonant Ring Interferometry as a Sensitive Technique for Measuring Nonlinear Optical Properties of Thin Films,” Optics Communications, Vol. 233, No. 4-6, 2004, pp. 297-304. doi:10.1016/j.optcom.2004.01.051
[16] D. Guo, S. Mazumdar, S. N. Dixit, F. Kajzar, F. Jarka, Y. Kawabe and N. Peyghambarian, “Role of the Conduction Band in Electroabsorption, Two-Photon Absorption, and Third-Harmonic Generation in Polydiacetylenes,” Physical Review B, Vol. 48, No. 3, 1993, pp. 1433-1459. doi:10.1103/PhysRevB.48.1433
[17] H. S. Zhou, T. Wada, H. Sasabe and H. Komiyama, “Synthesis and Optical Properties of Nanocomposite Silver-Polydiacetylene,” Synthetic Metals, Vol. 81, No. 2-3, 1996, pp. 129-132. doi:10.1016/S0379-6779(96)03754-X
[18] E. K. Ji, D. J. Ahn and J. M. Kim, “The Fluorescent Polydiacetylene Liposome,” Bulletin of the Korean Chemical Society, Vol. 24, No. 5, 2003, pp. 667-670. doi:10.5012/bkcs.2003.24.5.667
[19] R. J. Young, R. T. Read, D. Bloor and D. Ando, “Structure and Morphology of Polydiacetylene Single Crystal,” Faraday Discussions of the Chemical Society, Vol. 68, 1979, pp. 509-515. doi:10.1039/dc9796800509
[20] N. J. Poole, B. J. E. Smith, D. N. Batchelder, R. T. Read, R. J. Young, “Electron Microscopy of Photo-oxidized Polydiacetylene Crystals,” Journal of Materials Science, Vol. 21, No. 2, 1986, pp. 507-510. doi:10.1007/BF01145516
[21] N. P. Xuan, J. L. Ferrier, J. Gazengel and G. Rivoire, “Picosecond Measurements of the Third-Order Susceptibility Tensor in Liquids,” Optics Communications, Vol. 51, No. 6, 1984, pp. 433-437. doi:10.1016/0030-4018(84)90133-0
[22] M. T. Zhao, M. Samoc, B. P. Singh and P. N. Prasad, “Study of Third-Order Microscopic Optical Nonlinearities in Sequentially Built and Systematically Derivatized Structures,” Journal of Physical Chemistry, Vol. 93, No. 23, 1989, pp. 7916-7920. doi:10.1021/j100360a036
[23] J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman and J. Sounik, “Nonlinear Optical Processes in Lower Dimensional Conjugated Structures,” Journal of Optical Society of America B, Vol. 6, No. 4, 1989, pp. 707-720. doi:10.1364/JOSAB.6.000707
[24] C. W. Dirk, Lap-Tak Cheng and M. G. Kuzyk, “A Simplified Three-Level Model Describing the Molecular Third-Order Nonlinear Optical Susceptibility,” International Journal of Quantum Chemistry, Vol. 43, No. 1, 1992, pp. 27-36. doi:10.1002/qua.560430106
[25] B. J. Orr and J. F. Ward, “Perturbation Theory of the Nonlinear Optical Polarization of an Isolated System,” Molecular Physics, Vol. 20, No. 3, 1971, pp. 513-526. doi:10.1080/00268977100100481
[26] A. V. V. Nampoothiri, P. N. Puntambekar, B. P. Singh, R. Sachdeva, A. Sarkar, Dipti Saha, A. N. Suresh and S. S. Talwar, “Spectral Dispersion of Second Molecular Hyperpolarizability of Diacetylene Derivatives: Correlation with Electronic and Chemical Structure,” Journal of Chemical Physics, Vol. 109, No. 2, 1998, pp. 685-690. doi:10.1063/1.476607
[27] H. Vanherzeele, J. S. Meth, S. A. Jenekhe and M. F. Roberts, “Dispersion of the Third-Order Nonlinear-Optical Properties of Poly(p-phenylene benzobisthiazole) and Its Molecular Composites with Polyamides,” Journal of Optical Society of America B, Vol. 9, No. 9, 1992, pp. 524-533. doi:10.1364/JOSAB.9.000524
[28] B. Lawrence, W. E. Torruellas, M. Cha, M. L. Sundheimer, G. I. Stegeman, J. Meth, S. Etemad and G. Baker, “Identification and Role of Two-Photon Excited States in a π-Conjugated Polymer,” Physical Review Letters, Vol. 73, No. 4, 1994, pp. 597-600. doi:10.1103/PhysRevLett.73.597
[29] J. P. Hermann and J. Ducuing, “Third-Order Polarizabilities of Long-Chain Molecules,” Journal of Applied Physics, Vol. 45, No. 11, 1974, pp. 5100-5102. doi:10.1063/1.1663197
[30] K. C. Rustagi and J. Ducuing, “Third-Order Optical Polarizability of Conjugated Organic Molecules,” Optics Communications, Vol. 10, No. 3, 1974, pp. 258-261. doi:10.1016/0030-4018(74)90153-9
[31] G. P. Agrawal, C. Cojan and C. Flytzanis, “Nonlinear Optical Properties of One-Dimensional Semiconductors and Conjugated Polymers,” Physical Review B, Vol. 17, No. 2, 1978, pp. 776-789. doi:10.1103/PhysRevB.17.776

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.