Transient expression of the Arabidopsis thaliana callose synthase PMR4 increases penetration resistance to powdery mildew in barley


Localized cell wall thickenings, so called papillae, are a common plant defense response to fungal attack at sites of penetration of the plant cell. The major constituent of papillae is callose, a (1,3)-β-glucan polymer, which contributes to slowing or blocking the invading fungal hyphae. In the model plant Arabidopsis thaliana, we could recently show that the overexpression of PMR4(POWDERY MILDEW RESITANT 4), which encodes a stress induced callose synthase, results in complete powdery mildew resistance. To evaluate if these findings are also transferable to monocot crops, we transiently expressed PMR4 under control of the 35S promoter in leaves of barley (Hordeum vulgare) seedlings, which were subsequently inoculated with the virulent powdery mildew Blumeria graminis f. sp. hordei. Fusion of the green fluorescent protein (GFP) to PMR4 allowed the identification of successfully transformed barley cells, which showed an increased penetration resistance to B. graminis compared to control cells that express only GFP.PMR4-GFP localized in a similar pattern at the site of attempted fungal penetration as observed inA. thaliana, which suggests that similar transport mechanisms of the callose synthase might exist in dicot and monocot plants.

Share and Cite:

Blümke, A. , Somerville, S. and Voigt, C. (2013) Transient expression of the Arabidopsis thaliana callose synthase PMR4 increases penetration resistance to powdery mildew in barley. Advances in Bioscience and Biotechnology, 4, 810-813. doi: 10.4236/abb.2013.48106.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Stone, B.A. and Clarke, A.E. (1992) Chemistry and boilogy of (1→3)-β-glucans. La Trobe University Press, Bundoora.
[2] Aspinall, G.O. and Kessler, G. (1957) The structure of callose from the grape vine. Chemistry and Industry, London.
[3] Ellinger, D., Naumann, M., Falter, C., Zwikowics, C., Jamrow, T., Manisseri, C., Somerville, S.C. and Voigt, C.A. (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiology, 161, 1433-1444. doi:10.1104%2Fpp.112.211011
[4] Verma, D.P. and Hong, Z. (2001) Plant callose synthase complexes. Plant Molecular Biology, 47, 693-701. doi:10.1023%2FA%3A1013679111111
[5] Hong, Z., Zhang, Z., Olson, J.M. and Verma, D.P.S. (2001) A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell, 13, 769-780. doi:10.1105/tpc.13.4.755
[6] Dong, X., Hong, Z., Chatterjee, J., Kim, S. and Verma, D. (2008) Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta, 229, 87-98. doi:10.1007%2Fs00425-008-0812-3
[7] Voigt, C.A., Schafer, W. and Salomon, S. (2006) A comprehensive view on organ-specific callose synthesis in wheat (Triticum aestivum L.): Glucan synthase-like gene expression, callose synthase activity, callose quantification and deposition. Plant Physiology and Biochemistry, 44, 242-247. doi:10.1016/j.plaphy.2006.05.001
[8] Jacobs, A.K., Lipka, V., Burton, R.A., Panstruga, R., Strizhov, N., Schulze-Lefert, P. and Fincher, G.B. (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell, 15, 2503-2513. doi:10.1105/tpc.016097
[9] Nishimura, M.T., Stein, M., Hou, B.H., Vogel, J.P., Edwards, H. and Somerville, S.C. (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science, 301, 969-972. doi:10.1126/science.1086716
[10] Consonni, C., Bednarek, P., Humphry, M., Francocci, F., Ferrari, S., Harzen, A., Ver Loren van Themaat, E. and Panstruga, R. (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiology, 152, 1544-1561. doi:10.1104/pp.109.147660
[11] Bayles, C.J., Ghemawat, M.S. and Aist, J.R. (1990) Inhibition by 2-deoxy-D-glucose of callose formation, papilla deposition, and resistance to powdery mildew in an ml-o barley mutant. Physiological and Molecular Plant Pathology, 36, 63-72. doi:10.1016/0885-5765(90)90092-C
[12] Zeyen, R.J., Kruger, W.M., Lyngkjær, M.F. and Carver, T.L.W. (2002) Differential effects of D-mannose and 2-deoxy-D-glucose on attempted powdery mildew fungal infection of inappropriate and appropriate Gramineae. Physiological and Molecular Plant Pathology, 61, 315-323. doi:10.1006/pmpp.2003.0444
[13] Naumann, M., Somerville, S.C. and Voigt, C.A. (2013) Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines. Plant Signaling & Behavior, 8, e24408.
[14] Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., et al. (2012) The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414-430. doi:10.1111/j.1364-3703.2011.00783.x
[15] Horwitz, B.A., Sharon, A., Lu, S.W., Ritter, V., Sandrock, T.M., Yoder, O.C. and Turgeon, B.G. (1999) A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genetics and Biology, 26, 19-32. doi:10.1006/fgbi.1998.1094
[16] Zabbai, F., Jarosch, B. and Schaffrath, U. (2004) Overexpression of chloroplastic lipoxygenase RCI1 causes PR1 transcript accumulation in transiently transformed rice. Physiological and Molecular Plant Pathology, 64, 37-43. doi:10.1016/j.pmpp.2004.04.004
[17] Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., Lipka, V. and Somerville, S. (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 18, 731-746. doi:10.1105/tpc.105.038372
[18] Clark, T.A., Zeyen, R.J., Smith, A.G., Bushnell, W.R., Szabo, L.J. and Vance, C.P. (1993) Host response gene transcript accumulation in relation to visible cytological events during Erysiphe graminis attack in isogenic barley lines differing at the Ml-a locus. Physiological and Molecular Plant Pathology, 43, 283-298. doi:10.1006/pmpp.1993.1058
[19] Paredez, A.R., Somerville, C.R. and Ehrhardt, D.W. (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science, 312, 1491-1495. doi:10.1126/science.1126551
[20] Seeholzer, S., Tsuchimatsu, T., Jordan, T., Bieri, S., Pajonk, S., Yang, W., Jahoor, A., Shimizu, K.K., Keller, B. and Schulze-Lefert, P. (2010) Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Molecular Plant-Microbe Interactions, 23, 497-509. doi:10.1094/MPMI-23-4-0497
[21] Bohlenius, H., Morch, S.M., Godfrey, D., Nielsen, M.E. and Thordal-Christensen, H. (2010) The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. Plant Cell, 22, 3831-3844. doi:10.1105/tpc.110.078063
[22] Mayer, K.F., Waugh, R., Brown, J.W., Schulman, A., Langridge, P., Platzer, M., Fincher, G.B., Muehlbauer, G.J., Sato, K., Close, T.J., et al. (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature, 491, 711-716. doi:10.1038/nature11543

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.