[1]
|
Stone, B.A. and Clarke, A.E. (1992) Chemistry and boilogy of (1→3)-β-glucans. La Trobe University Press, Bundoora.
|
[2]
|
Aspinall, G.O. and Kessler, G. (1957) The structure of callose from the grape vine. Chemistry and Industry, London.
|
[3]
|
Ellinger, D., Naumann, M., Falter, C., Zwikowics, C., Jamrow, T., Manisseri, C., Somerville, S.C. and Voigt, C.A. (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiology, 161, 1433-1444.
doi:10.1104%2Fpp.112.211011
|
[4]
|
Verma, D.P. and Hong, Z. (2001) Plant callose synthase complexes. Plant Molecular Biology, 47, 693-701.
doi:10.1023%2FA%3A1013679111111
|
[5]
|
Hong, Z., Zhang, Z., Olson, J.M. and Verma, D.P.S. (2001) A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell, 13, 769-780.
doi:10.1105/tpc.13.4.755
|
[6]
|
Dong, X., Hong, Z., Chatterjee, J., Kim, S. and Verma, D. (2008) Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta, 229, 87-98.
doi:10.1007%2Fs00425-008-0812-3
|
[7]
|
Voigt, C.A., Schafer, W. and Salomon, S. (2006) A comprehensive view on organ-specific callose synthesis in wheat (Triticum aestivum L.): Glucan synthase-like gene expression, callose synthase activity, callose quantification and deposition. Plant Physiology and Biochemistry, 44, 242-247. doi:10.1016/j.plaphy.2006.05.001
|
[8]
|
Jacobs, A.K., Lipka, V., Burton, R.A., Panstruga, R., Strizhov, N., Schulze-Lefert, P. and Fincher, G.B. (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell, 15, 2503-2513. doi:10.1105/tpc.016097
|
[9]
|
Nishimura, M.T., Stein, M., Hou, B.H., Vogel, J.P., Edwards, H. and Somerville, S.C. (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science, 301, 969-972.
doi:10.1126/science.1086716
|
[10]
|
Consonni, C., Bednarek, P., Humphry, M., Francocci, F., Ferrari, S., Harzen, A., Ver Loren van Themaat, E. and Panstruga, R. (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiology, 152, 1544-1561.
doi:10.1104/pp.109.147660
|
[11]
|
Bayles, C.J., Ghemawat, M.S. and Aist, J.R. (1990) Inhibition by 2-deoxy-D-glucose of callose formation, papilla deposition, and resistance to powdery mildew in an ml-o barley mutant. Physiological and Molecular Plant Pathology, 36, 63-72. doi:10.1016/0885-5765(90)90092-C
|
[12]
|
Zeyen, R.J., Kruger, W.M., Lyngkjær, M.F. and Carver, T.L.W. (2002) Differential effects of D-mannose and 2-deoxy-D-glucose on attempted powdery mildew fungal infection of inappropriate and appropriate Gramineae. Physiological and Molecular Plant Pathology, 61, 315-323. doi:10.1006/pmpp.2003.0444
|
[13]
|
Naumann, M., Somerville, S.C. and Voigt, C.A. (2013) Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines. Plant Signaling & Behavior, 8, e24408. http://www.landesbioscience.com/journals/psb/article/24408/
|
[14]
|
Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., et al. (2012) The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414-430.
doi:10.1111/j.1364-3703.2011.00783.x
|
[15]
|
Horwitz, B.A., Sharon, A., Lu, S.W., Ritter, V., Sandrock, T.M., Yoder, O.C. and Turgeon, B.G. (1999) A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genetics and Biology, 26, 19-32.
doi:10.1006/fgbi.1998.1094
|
[16]
|
Zabbai, F., Jarosch, B. and Schaffrath, U. (2004) Overexpression of chloroplastic lipoxygenase RCI1 causes PR1 transcript accumulation in transiently transformed rice. Physiological and Molecular Plant Pathology, 64, 37-43. doi:10.1016/j.pmpp.2004.04.004
|
[17]
|
Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., Lipka, V. and Somerville, S. (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 18, 731-746. doi:10.1105/tpc.105.038372
|
[18]
|
Clark, T.A., Zeyen, R.J., Smith, A.G., Bushnell, W.R., Szabo, L.J. and Vance, C.P. (1993) Host response gene transcript accumulation in relation to visible cytological events during Erysiphe graminis attack in isogenic barley lines differing at the Ml-a locus. Physiological and Molecular Plant Pathology, 43, 283-298.
doi:10.1006/pmpp.1993.1058
|
[19]
|
Paredez, A.R., Somerville, C.R. and Ehrhardt, D.W. (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science, 312, 1491-1495. doi:10.1126/science.1126551
|
[20]
|
Seeholzer, S., Tsuchimatsu, T., Jordan, T., Bieri, S., Pajonk, S., Yang, W., Jahoor, A., Shimizu, K.K., Keller, B. and Schulze-Lefert, P. (2010) Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Molecular Plant-Microbe Interactions, 23, 497-509. doi:10.1094/MPMI-23-4-0497
|
[21]
|
Bohlenius, H., Morch, S.M., Godfrey, D., Nielsen, M.E. and Thordal-Christensen, H. (2010) The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. Plant Cell, 22, 3831-3844.
doi:10.1105/tpc.110.078063
|
[22]
|
Mayer, K.F., Waugh, R., Brown, J.W., Schulman, A., Langridge, P., Platzer, M., Fincher, G.B., Muehlbauer, G.J., Sato, K., Close, T.J., et al. (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature, 491, 711-716. doi:10.1038/nature11543
|