Electromagnetic Lifshitz Formula for Small-Width Mirrors from Functional Determinants


We extend a recently proposed Quantum Field Theory (QFT) approach to the Lifshitz formula, originally implemented for a real scalar field, to the case of a fluctuating vacuum Electromagnetic (EM) field, coupled to two flat, parallel mirrors. The general result is presented in terms of the invariants of the vacuum polarization tensors due to the media on each mirror. We consider mirrors that have small widths, with the zero-width limit as a particular case. We apply the latter to models involving graphene sheets, obtaining results which are consistent with previous ones.

Share and Cite:

C. Fosco and M. Remaggi, "Electromagnetic Lifshitz Formula for Small-Width Mirrors from Functional Determinants," Applied Mathematics, Vol. 4 No. 8, 2013, pp. 1173-1179. doi: 10.4236/am.2013.48157.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. M. Lifshitz, “The Theory of Molecular Attractive Forces between Solids,” Sov. Phys. JETP, Vol. 2, 1956, pp. 73-83.
[2] H. B. G. Casimir, “On the Attraction between Two Per fectly Conducting Plates,” Indagationes Mathematicae, Vol. 10, 1948, pp. 261-263; Koninklijke Nederlandse Aka demie van Wetenschappen Proceedings, Vol. 51, 1948, pp. 793-795; Frontiers of Physics, Vol. 65, 1987, pp. 342-344; Koninklijke Nederlandse Akademie van Weten schappen Proceedings, Vol. 100, No. 3-4, 1997, pp. 61-63.
[3] P. W. Milonni, “The Quantum Vacuum: An Introduction to Quantum Electrodynamics,” Academic Press, San Diego, 1994.
[4] N. Graham, R. L. Jaffe, V. Khemani, M. Quandt, O. Schroeder and H. Weigel, “The Dirichlet Casimir Prob lem,” Nuclear Physics B, Vol. 677, No. 1-2 2004, pp. 379-404. doi:10.1016/j.nuclphysb.2003.11.001
[5] C. D. Fosco, F. C. Lombardo and F. D. Mazzitelli, “Casi mir Energies with Finite-Width Mirrors,” Physical Re view D, Vol. 77, 2008, pp. 085018 1-12.
[6] C. D. Fosco, F. C. Lombardo and F. D. Mazzitelli, “Casi mir Effect with Dynamical Matter on Thin Mirrors,” Physics Letters B, Vol. 669, No. 5, 2008, pp. 371-375. doi:10.1016/j.physletb.2008.10.004
[7] C. D. Fosco and E. Losada, “Casimir Effect with Nonlo cal Boundary Interactions,” Physics Letters B, Vol. 675, No. 2, 2009, pp. 252-256. doi:10.1016/j.physletb.2009.03.084
[8] C. Ccapa Ttira, C. D. Fosco and F. D. Mazzitelli, “Lifshitz Formula for the Casimir Force and the Gelfand Yaglom Theorem,” Journal of Physics A, Vol. 44, 2011, pp. 465403 1-13.
[9] I. M. Gelfand and A. M. Yaglom, “Integration in Func tional Spaces and It Applications in Quantum Physics,” Journal of Mathematical Physics, Vol. 1, No. 1, 1960, pp. 48-69. doi:10.1063/1.1703636
[10] G. V. Dunne, “Functional Determinants in Quantum Field Theory,” Journal of Physics A, Vol. 41, 2008, pp. 304006 1-15.
[11] M. Bordag, B. Geyer, G. L. Klimchitskaya and V. M. Mostepanenko, “Lifshitz-Type Formulas for Graphene and Single-Wall Carbon Nanotubes: Van der Waals and Casimir Interactions,” Physical Review B, Vol. 74, 2006, pp. 205431 1-9.
[12] M. Bordag, I. V. Fialkovsky, D. M. Gitman and D. V. Vassilevich, “Casimir Interaction between a Perfect Con ductor and Graphene Described by the Dirac Model,” Physical Review B, Vol. 80, 2009, pp. 245406 1-5.
[13] I. V. Fialkovsky, V. N. Marachevsky and D. V. Vassile vich, “Finite Temperature Casimir Effect for Graphene,” Physical Review B, Vol. 84, 2011, pp. 035446 1-13.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.