Development of Wearable Semi-invasive Blood Sampling Devices for Continuous Glucose Monitoring: A Survey


Semi-invasive blood sampling devices mimic the way female mosquitoes extract blood from a host. They generally consist of a microneedle, a microactuator for needle insertion, a blood extraction mechanism and a blood glucose sensor. These devices have great potential to overcome the major disadvantages of several current blood glucose monitoring methods. Over last two decades, extensive research has been made in all of these related fields. More recently, several wearable devices for semi-invasive blood sampling have been developed. This review aims at summarizing the current state-of-the-art development and utilization of such wearable devices for continuous monitoring of blood glucose levels, with a special attention on design considerations, fabrication technologies and testing methods.

Share and Cite:

G. Wang and M. P. Mintchev, "Development of Wearable Semi-invasive Blood Sampling Devices for Continuous Glucose Monitoring: A Survey," Engineering, Vol. 5 No. 5B, 2013, pp. 42-46. doi: 10.4236/eng.2013.55B009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] American Diabetes Association, "Standards of Medical Care in Diabetes – 2012,” Diabetes Cares, Vol. 35, No. 2, 2012, pp. S11-63.
[2] F. M. Hendriks, D. Brokken, C. W. J. Oomens, F. P. T. Baaijens and J. B. A. Horsten, “Mechanical Properties of Different Layers of Human Skin,” Philips Research Laboratories, Eindhoven, 2000.
[3] N. Oliver, C. Toumazou, A. Cass and D. G. Johnston, "Glucose Sensors: A Review of Current and Emerging Technology,” Diabetic Medicine, Vol. 26, No. 3, 2009, pp. 197-210. doi:10.1111/j.1464-5491.2008.02642.x
[4] A. Penfornis, E. Personeni and S. Borot, “Evolution of Devices in Diabetes Management,” Diabetes Technology and Therapeutics, Vol. 13, No. 4, 2011, pp. S93-101.
[5] L. Hoeks, W. Greven and H. d. Valk, “Real-Time Continuous Glucose Monitoring System for Treatment of Diabetes: A Systematic Review,” Diabetic Medicine, Vol. 28, No. 2, 2001, pp. 386-94. doi:10.1111/j.1464-5491.2010.03177.x
[6] G. Gattiker, K. Kaler and M. Mintchev, “Electronic Mosquito: Designing a Semi-Invasive Microsystem for Blood Sampling, Analysis and Drug Delivery Applications,” Microsysemt Technologies, Vol. 12, No. 1, pp. 44-51, 2005. doi:10.1007/s00542-005-0015-9
[7] F. Martini, “Fundamentals of Anatomy & Physiology,”Upper Saddle River, N. J.: Prentice Hall, 2001.
[8] A. El-Laboudi, N. S. Oliver, A. Cass and D. Johnston, “Use of Microneedle Array Devices for Continuous Glucose Monitoring: A Review,” Diabetes Technology & Therapeutic, Vol. 15, No. 1, 2013, pp. 101-115. doi:10.1089/dia.2012.0188
[9] A. Hudson, “Notes on Piercing Mouthparts of Three Species of Mosquitoes Viewed with the Scanning Electron Microscope,” The Canadian Entomologist, Vol. 102, No. 4, 1970, pp. 501-509. doi:10.4039/Ent102501-4
[10] J. C. Jones and D. R. Pilitt, "Blood-feeding Behavior of Adult Aedes Aegypti Mosquitoes," Biology Bulletin, Vol. 145, No. 1, 1973, pp. 127-139. doi:10.2307/1540353
[11] M. K. Ramasubramanian, O. M. Barham and V. Swaminathan, “Mechanics of a Mosquito Bite with Applications to Microneedle Design,” Bioinspiration & Biomimetics, Vol. 3, No. 4, 2008, pp. 1-10. doi:10.1088/1748-3182/3/4/046001
[12] P. Kashin, “Electronic Recording of the Mosquito Bite,” J. Insect Physiol, Vol. 12, No. 3, 1966, pp. 281-286. doi:10.1016/0022-1910(66)90143-0
[13] H. Izumi, M. Suzuki, S. Aoyagi and T. Kanzaki, “Realistic Imitation of Mosquito’s Proboscis: Electrochemically etched Sharp and Jagged Needles and Their Cooperative Inserting Motion,” Sensors and Actuators A, Vol. 165, No. 1, 2011, pp. 115-123. doi:10.1016/j.sna.2010.02.010
[14] B. H. Kim, H. K. Kim and S. J. Lee, “Experimental Analysis of the Blood-sucking Mechanism of Female Mosquitoes,” The Journal of Experimental Biology, Vol. 214, No. 7, 2011, pp. 1163-1169.doi:10.1242/jeb.048793
[15] “Hypodermic Needle Gauge Chart,” TED PELLA, Inc, [Online]. Available: [Accessed 12 March 2013].
[16] M. Gestel and V. Place, “Drug Delivery Device,” United States of America Patent 3,964,482, 1976.
[17] H. J. G. E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. d. Boer, S. Y. Yeshurun, M. Hefetz, R. V. Oever and A. V. D. Berg, “Silicon Micromachined Hollow Microneedles for Transdermal Liquid Transport,” Journal of Microelectromechanical Systems, Vol. 12, No. 1,2003, pp. 855-862. doi:10.1109/JMEMS.2003.820293
[18] K. Tsuchiya, N. Nakanishi, Y. Uetsuji and E. Nakamachi, “Development of Blood Extraction System for Health Monitoring System,” Biomedical Microdevices, Vol. 7, No. 4, 2005, pp. 347-353. doi:10.1007/s10544-005-6077-8
[19] M. Kohl, “Shape Memory Microactuators,” Microtechnology and MEMS, 2004. doi:10.1007/978-3-662-09875-2
[20] P. Senthilkumar, G. Dayananda, M. Umapathy and V. Shankar, “Experimental Evaluation of a Shape Memory Alloy Wire Actuator with a Modulated Adaptive Controller for Position Control,” Smart Materials and Structures, Vol. 21, No. 1, 2011, pp. 1-11.
[21] J. Gupta, H. Gill, S. Andrews and M. Prausnitz, “Kinetic of Skin Resealing After Insertion of Microneedles in Human Subjects,” Journal of Control Release, Vol. 154, No. 1, 2011, pp. 148-155. doi:10.1016/j.jconrel.2011.05.021
[22] S. Coulman, J. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler and B. Povazay, “Invivo, insitu imaging of microneedle insertion into the skin of human volunteer using optical coherence tomography,” Pharmaceutical Research, Vol. 28, No. 1, 2011, pp. 357-361. doi:10.1007/s11095-010-0167-x
[23] H. Lee and J. Lee, “Evaluation of the Characteristics of a Shape Memory Alloy Spring Actuator,” Smart Materials and Structures, Vol. 9, No. 6, 2000, pp. 817-823. doi:10.1088/0964-1726/9/6/311
[24] G. Gattiker, PhD Thesis: Designing a BioMEMS-based Blood Sampler, Calgary: University of Calgary, 2006.
[25] G. Thomas, MSc Thesis: Electronic Mosquito: A Feed-back-Controlled Semi-Invasive Microsystem for Glucose Monitoring, Calgary: University of Calgary, 2009.
[26] S. Chakraborty and K. Tsuchiya, “Development and Fluidic Simulation of Microneedles,” Journal of Applied Physics, Vol. 103, No. 1, 2008, pp. 1-9.
[27] Y. Matsuura, T. Uenoya, K. Tsuchiya, Y. Uetsuji and E. Nakamachi, “Development of a Blood Extraction Device for a Miniature SMBG System,” in Proc. SPIE 6799, Bio MEMS and Nanotechnology III, Canberra, 2007.
[28] J. Wang, “Electrochemical Glucose Biosensors,” Chemical Reviews, Vol. 108, No. 1, 2008, pp. 814-825. doi:10.1021/cr068123a
[29] S. Vashist, Zheng, Al-Rubeaan and F. J. H. Luong, “Technology Behind Commercial Devices for Blood Glucose Monitoring in Diabetes Management: A Review,” Analytical Chimica Acta, Vol. 703, No. 2, 2011, pp. 124-136. doi:10.1016/j.aca.2011.07.024.
[30] J. Pickup, F. Hussain, N. Evans and N. Sachedina, “In Vivo Glucose Monitoring: The Clinical Reality and the Promise,” Biosensors and Bioelectronics, Vol. 20, No. 10, 2005, pp. 1897-1902. doi:10.1016/j.bios.2004.08.016

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.