Surface Modification of NaCl Particles with Metal Films Using the Polygonal Barrel-Sputtering Method


In this study, the surfaces of NaCl particles were modified with metal films using the polygonal barrel-sputtering method. When Pt was sputtered on NaCl particles, the individual particles changed from white to metallic. Characterization of the treated samples indicated that thin Pt metal films were uniformly deposited on the NaCl particles. Immersion of the treated NaCl particles in water revealed that they floated to the surface of the water with the increase in the immersion time, although their original cubic shapes remained unchanged. The floating phenomenon of the Pt-coated NaCl particles, as mentioned above, suggests that NaCl was dissolved by the permeation of water through invisible defects such as grain boundaries in the Pt films, leading to the formation of hollow particle-like materials. It should be noted that uniform film deposition on the NaCl particles could also be achieved by sputtering with Au or Cu. Based on the obtained results, our sputtering method allows uniform surface modification of water-soluble and water-reactive powders that cannot be treated by conventional wet process using water.

Share and Cite:

S. Akamaru, M. Inoue and T. Abe, "Surface Modification of NaCl Particles with Metal Films Using the Polygonal Barrel-Sputtering Method," Materials Sciences and Applications, Vol. 4 No. 7B, 2013, pp. 29-34. doi: 10.4236/msa.2013.47A2005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Tolmacsov, A. Gazsi and F. Solymosi, “Decomposition and Reforming of Methanol on Pt Metals Supported by Carbon Norit,” Applied Catalysis A: General, Vol. 362, No. 1-2, 2009, pp. 58-61. doi:10.1016/j.apcata.2009.04.015
[2] B. Grbic, N. Radic, Z. Arsenijevic, R. Garic-Grulovic and Z. Grbavcic, “Structure Sensitivity of Dimethylamine Deep Oxidation over Pt/Al2O3 Catalysts,” Applied Catalysis B: Environmental, Vol. 90, No. 3-4, 2009, pp. 478-484. doi:10.1016/j.apcatb.2009.04.008
[3] M. Ruta, N. Semagina and L. Kiwi-Minsker, “Monodispersed Pd Nanoparticles for Acetylene Selective Hydrogenation: Particle Size and Support Effects,” The Journal of Physical Chemistry C, Vol. 112, No. 35, 2008, pp. 13635-13641. doi:10.1021/jp803800w
[4] J. S. Jang, S. H. Choi, H. G. Kim and J. S. Lee, “Location and State of Pt in Platinized CdS/TiO2 Photocatalysts for Hydrogen Production from Water under Visible Light,” The Journal of Physical Chemistry C, Vol. 112, No. 44, 2008, pp. 17200-17205. doi:10.1021/jp804699c
[5] L. M. Torres-Martínez, R. Gómez, O. Vázquez-Cuchillo, I. Juárez-Ramírez, A. Cruz-López and F. J. AlejandreSandoval, “Enhanced Photocatalytic Water Splitting Hydrogen Production on RuO2/La:NaTaO3 Prepared by Sol-Gel Method,” Catalysis Communications, Vol. 12, No. 4, 2010, pp. 268-272. doi:10.1016/j.catcom.2010.09.032
[6] L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze and H. Q. Wu, “Surface Modifications of Electrode Materials for Lithium Ion Batteries,” Solid State Sciences, Vol. 8, No. 2, 2006, pp. 113-128. doi:10.1016/j.solidstatesciences.2005.10.019
[7] Z. B. Wang, G. P. Yin and P. F. Shi, “New Pt-Ru Solid Compounds as Precursors of Anodic Catalysts for Direct Methanol Fuel Cell,” Journal of Alloys and Compounds, Vol. 420, No. 1-2, 2006, pp. 126-132. doi:10.1016/j.jallcom.2005.10.042
[8] Y. Chen, Y. Zhou, Y. Tang and T. Lu, “Electrocatalytic Properties of Carbon-Supported Pt-Ru Catalysts with the High Alloying Degree for Formic Acid Electrooxidation,” Journal of Power Sources, Vol. 195, No. 13, 2010, pp. 4129-4134. doi:10.1016/j.jpowsour.2010.01.054
[9] B. N. Popov, X. Li, G. Liu and J.-W. Lee, “Power Source Research at USC: Development of Advanced Eelectrocatalysts for Polymer Electrolyte Membrane Fuel Cells,” International Journal of Hydrogen Energy, Vol. 36, No. 2, 2011, pp. 1794-1802. doi:10.1016/j.ijhydene.2009.12.050
[10] V. M. Aroutiounian, A. Z. Adamyan, E. A. Khachaturyan, Z. N. Adamyan, K. Hernadi, Z. Pallai, Z. Nemeth, L. Forro, A. Magrez and E. Horvath, “Study of the SurfaceRuthenated SnO2/MWCNTs Nanocomposite Thick-Film Gas Sensors,” Sensors and Actuators B, Vol. 177, 2013, pp. 308-315. doi:10.1016/j.snb.2012.10.106
[11] H.-K. Lee, H.-Y. Lee and J.-M. Jeon, “Codeposition of Microand Nano-Sized SiC Particles in the Nickel Matrix Composite Coatings Obtained by Electroplating,” Surface & Coatings Technology, Vol. 201, No. 8, 2007, pp. 4711-4717. doi:10.1016/j.surfcoat.2006.10.004
[12] Y.-G. Zhou, N. V. Rees and R. G. Compton, “Nanoparticle-Electrode Collision Processes: The Electroplating of Bulk Cadmium on Impacting Silver Nanoparticles,” Chemical Physics Letters, Vol. 511, No. 4-6, 2011, pp. 183-186. doi:10.1016/j.cplett.2011.06.015
[13] Y. Xiang, L. Yang, W. Cheng-biao, L. Xin-chun and Y. De-yang, “Investigation on Preparation and Properties of Thick DLC Film in Medium-Frequency Dual-Magnetron Sputtering,” Vacuum, Vol. 80, No. 4, 2005, pp. 324-331. doi:10.1016/j.vacuum.2005.06.002
[14] M. Alvisi, G. Galtieri, L. Giorgi, R. Giorgi, E. Serra and M. A. Signore, “Sputter Deposition of Pt Nanoclusters and Thin Films on PEM Fuel Cell Electrodes,” Surface & Coatings Technology, Vol. 200, No. 5-6, 2005, pp. 1325-1329. doi:10.1016/j.surfcoat.2005.07.093
[15] C. Lee and J. Bae, “Oxidation-Resistant Thin Film Coating on Ferritic Stainless Steel by Sputtering for Solid Oxide Fuel Cells,” Thin Solid Films, Vol. 516, No. 18, 2008, pp. 6432-6437. doi:10.1016/j.tsf.2008.02.045
[16] T. Wang, X. Diao and X. Wang, “Inhomogeneous Optoelectronic and Microstructure Property Distribution across the Substrate of ZnO:Al Films Deposited by Room Temperature Magnetron Sputtering,” Applied Surface Science, Vol. 257, No. 23, 2011, pp. 9773-9779. doi:10.1016/j.apsusc.2011.06.010
[17] T. Abe, S. Higashide, M. Inoue and S. Akamaru, “Surface Modification of Fine Particles with a SnO2 Film by Using a Polyhedral-Barrel Sputtering System,” Plasma Chemistry and Plasma Processing, Vol. 27, No. 6, 2007, pp. 799-811. doi:10.1007/s11090-007-9100-4
[18] M. Hara, Y. Hatano, T. Abe, K. Watanabe, T. Naitoh, S. Ikeno and Y. Honda, “Hydrogen Absorption by Pd-Coated ZrNi Prepared by Using Barrel-Sputtering System,” Journal of Nuclear Materials, Vol. 320, No. 3, 2003, pp. 265-271. doi:10.1016/S0022-3115(03)00189-2
[19] T. Abe, S. Akamaru and K. Watanabe, “Surface Modification of Al2O3 Ceramic Grains Using a New RF Sputtering System Developed for Powdery materials,” Journal of Alloys and Compounds, Vol. 377, No. 1-2, 2004, pp. 194-201. doi:10.1016/j.jallcom.2003.12.053
[20] S. Akamaru, S. Higashide, M. Hara and T. Abe, “Surface Coating of Small SiO2 Particles with TiO2 Thin Layer by Using Barrel-Sputtering System,” Thin Solid Films, Vol. 513, No. 1-2, 2006, pp. 103-109. doi:10.1016/j.tsf.2006.01.056
[21] T. Abe, H. Hamatani, S. Higashide, M. Hara and S. Akamaru, “Surface Coating of Small SiO2 Particles with a WO3 Thin Film by Barrel-Sputtering Method,” Journal of Alloys and Compounds, Vol. 441, No. 1-2, 2007, pp. 157-161. doi:10.1016/j.jallcom.2006.07.132
[22] A. Taguchi, M. Inoue, C. Hiromi, M. Tanizawa, T. Kitami and T. Abe, “Study of the Surface Morphology of Platinum Thin Films on Powdery Substrates Prepared by the Barrel Sputtering System,” Vacuum, Vol. 83, No. 3, 2009, pp. 575-578. doi:10.1016/j.vacuum.2008.04.023
[23] T. Abe, M. Tanizawa, K. Watanabe and A. Taguchi, “CO2 Methanation Property of Ru Nanoparticle-loaded TiO2 Prepared by a Polygonal Barrel-Sputtering Method,” Energy & Environmental Science, Vol. 2, No. 3, 2009, pp. 315-321. doi:10.1039/b817740f
[24] S. Akamaru, M. Inoue, Y. Honda, A. Taguchi and T. Abe, “Preparation of Ni Nanoparticles on Submicron-Sized Al2O3 Powdery Substrate by Polyhedral-Barrel-Sputtering Technique and Their Magnetic Properties,” Japanese Journal of Applied Physics, Vol. 51, No. 6, 2012, Article ID: 065201. doi:10.1143/JJAP.51.065201
[25] T. Abe, S. Akamaru, K. Watanabe and Y. Honda, “Surface Modification of Polymer Microparticles Using a Hexagonal-Barrel Sputtering System,” Journal of Alloys and Compounds, Vol. 402, No. 1-2, 2005, pp. 227-232. doi:10.1016/j.jallcom.2005.02.097
[26] A. Taguchi, T. Kitami, H. Yamamoto, S. Akamaru, M. Hara and T. Abe, “Surface Coating with Various Metals on Spherical Polymer Particles by Using Barrel Sputtering Technique,” Journal of Alloys and Compounds, Vol. 441, No. 1-2, 2007, pp. 162-167. doi:10.1016/j.jallcom.2006.07.131
[27] S. Akamaru, H. Yamamoto and T. Abe, “Surface Coating of Microparticles with Tungsten Carbide by Using the Barrel Sputtering System,” Vacuum, Vol. 83, No. 3, 2009, pp. 633-636. doi:10.1016/j.vacuum.2008.04.052
[28] H. Yamamoto, K. Hirakawa and T. Abe, “Surface Modification of Carbon Nanofibers with Platinum Nanoparticles Using a ‘Polygonal Barrel-Sputtering’ System,” Materials Letters, Vol. 62, No. 14, 2008, pp. 2118-2121. doi:10.1016/j.matlet.2007.11.039
[29] M. Inoue, H. Shingen, T. Kitami, S. Akamaru, A. Taguchi, Y. Kawamoto, A. Tada, K. Ohtawa, K. Ohba, M. Matsuyama, K. Watanabe, I. Tsubone and T. Abe, “Preparation and Physical and Electrochemical Properties of Carbon-Supported Pt-Ru (Pt-Ru/C) Samples Using the Polygonal Barrel-Sputtering Method,” The Journal of Physical Chemistry C, Vol. 112, No. 5, 2008, pp. 1479-1492. doi:10.1021/jp075400o
[30] M. Inoue, T. Nishimura, S. Akamaru, A. Taguchi, M. Umeda and T. Abe, “CO Oxidation on Non-Alloyed Pt and Ru Electrocatalysts Prepared by the Polygonal BarrelSputtering Method,” Electrochimica Acta, Vol. 54, No. 21, 2009, pp. 4764-4771. doi:10.1016/j.electacta.2009.04.009
[31] M. Inoue, S. Akamaru, A. Taguchi and T. Abe, “Physical and Electrochemical Properties of Pt-Ru/C Samples Prepared on Various Carbon Supports by Using the Barrel Sputtering System,” Vacuum, Vol. 83, No. 3, 2009, pp. 658-663. doi:10.1016/j.vacuum.2008.04.042
[32] C. Hiromi, M. Inoue, A. Taguchi and T. Abe, “Optimum Pt and Ru Atomic Composition of Carbon-Supported PtRu Alloy Electrocatalyst for Methanol Oxidation Studied by the Polygonal Barrel-Sputtering Method,” Electrochimica Acta, Vol. 56, No. 24, 2011, pp. 8438-8445. doi:10.1016/j.electacta.2011.07.023
[33] I. Fenoglio, B. Fubini, E. M. Ghibaudi and F. Turci, “Multiple Aspects of the Interaction of Biomacromolecules with Inorganic Surfaces,” Advanced Drug Delivery Reviews, Vol. 63, No. 13, 2011, pp. 1186-1209. doi:10.1016/j.addr.2011.08.001
[34] A.-M. Chacko, E. D. Hood, B. J. Zern and V. R. Muzykantov, “Targeted Nanocarriers for Imaging and Therapy of Vascular Iflammation,” Current Opinion in Colloid & Interface Science, Vol. 16, No. 3, 2011, pp. 215-227. doi:10.1016/j.cocis.2011.01.008

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.