Osmium-Polymer Modified Carbon Nanotube Paste Electrode for Detection of Sucrose and Fructose


The aim of the work was the modification of a carbon nanotube paste electrode with a highly original osmium-polymer hydrogel for the development of a new amperometric biosensor for detection of sucrose and fructose. The biosensor for sucrose is based on the activity of the enzymes invertase and fructose dehydrogenase (FDH) immobilized into a carbon nanotube paste (CNTP) electrode properly modified with the Os-polymer. A second biosensor, for fructose only, is constructed containing inactive invertase and used for detection of fructose and for signal subtraction. The biosensors exhibit a detection limit for sucrose of 2 mM and for fructose of 1 mM, linearity up to 5 mM for both biosensors, high sensitivity (1.98 mA·cm-2·mM for sucrose and 1.95 mA·cm-2·mM for fructose), a good reproducibility (RSD = 2.5% for sucrose and 2.1% for fructose), fast response time (8 s for sucrose and 4 s for fructose) and a stability of about 4 months for both biosensors when stored under wet conditions at 4°C. Finally, the biosensors were applied for specific determination of sucrose and fructose in several commercial fruit juice samples and validated with a commercial spectrophotometric enzymatic kit.

Share and Cite:

R. Antiochia, F. Tasca and L. Mannina, "Osmium-Polymer Modified Carbon Nanotube Paste Electrode for Detection of Sucrose and Fructose," Materials Sciences and Applications, Vol. 4 No. 7B, 2013, pp. 15-22. doi: 10.4236/msa.2013.47A2003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. A. Durst, A. J. Baumner, R. W. Murray, R. P. Buck and C. P. Andrieux, “Chemically Modified Electrodes: Recommended Terminology and Definitions,” Pure and Applied Chemistry, Vol. 69, No. 6, 1997, pp. 1317-1323. doi:10.1351/pac199769061317
[2] P. N. Bartlett, “Modified Electrode Surface in Amperometric Biosensors,” Medical & Biological Engineering & Computing, Vol. 28, No. 3, 1990, pp. 10-17. doi:10.1007/BF02442675
[3] F. Valentini, A. Amine, S. Orlanducci, M. L. Terranova and G. Palleschi, “Carbon Nanotubes Purification: Preparation and Characterization of Carbon Nanotube Paste Electrodes,” Analytical Chemistry, Vol. 75, No. 20, 2003, pp. 5413-5421. doi:10.1021/ac0300237
[4] R. Antiochia, I. Lavagnini, F. Magno, F. Valentini and G. Palleschi, “Single-Wall Carbon Nanotube Paste Electrodes: A Comparison with Carbon Paste, Platinum and Glassy Carbon Electrodes via Cyclic Voltammetric Data,” Electroanalysis, Vol. 16, 2004, pp.1451-1458. doi:10.1002/elan.200302971
[5] R. Antiochia, I. Lavagnini and F. Magno, “Electrocatalytic Oxidation of NADH at Single-Wall Carbon Nanotube-Paste Electrodes: Kinetic Considerations for Use of a Redox Mediator in Solution and Dissolved in the Paste,” Analytical Bioanalytical Chemistry, Vol. 381, No. 7, 2005, pp. 1355-1458. doi:10.1007/s00216-005-3079-6
[6] J. J. Gooding, “Nanostructuring Electrodes with Carbon Nanotubes: A Review on Electrochemistry Applications for Sensing,” Electrochimica Acta, Vol. 50, No. 15, 2005, 3049-3060. doi:10.1016/j.electacta.2004.08.052
[7] J. Wang, “Carbon-Nanotube Based Electrochemical Biosensors: A Review,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 7-14. doi:10.1002/elan.200403113
[8] R. Antiochia, I. Lavagnini and F. Magno, “Amperometrioc Mediated Carbon Nanotube Paste Biosensor for Fructose Determination,” Analytical Letters, Vol. 37, No. 8, 2004, pp. 1657-1669. doi:10.1081/AL-120037594
[9] S. Timur, B. Haghighi, J. Tkac, N. Pazarlioglu, A. Telefoncu and L. Gorton, “Electrical Wiring of Pseudomonas putida and Pseudomonas Fluorescens with Osmium Redox Polymers,” Bioelectrochemistry, Vol. 71, No. 1, 2006, pp. 38-45. doi:10.1016/j.bioelechem.2006.08.001
[10] S. Timur, Y. Yigzae and L. Gorton, “Electrical Wiring of Pyranose Oxidase with Osmium Redox Polymers,” Sensor and Actuators B: Chemical, Vol. 113, No. 2, 2006, pp. 684-691. doi:10.1016/j.snb.2005.07.017
[11] R. Antiochia and L. Gorton, “Development of a Carbon Nanotube Paste Electrode Osmium Polymer-Mediated Biosensor for Determination of Glucose in Alcoholic Beverages,” Biosensor & Bioelectronics, Vol. 22, No. 11, 2007, pp. 2611-2617. doi:10.1016/j.bios.2006.10.023
[12] A. Heller, “Electrical Connection of Enzyme Redox Centers to Electrodes,” The Journal of Physical Chemistry, Vol. 96, No. 9, 1992, pp. 3579-3587. doi:10.1021/j100188a007
[13] A. Heller and B. Feldman, “Electrochemical Glucose Sensors and Their Applications in Diabetes Management,” Chemical Reviews, Vol. 108, No. 7, 2008, pp. 2482-2505. doi:10.1021/cr068069y
[14] AOAC International, “Official Methods of Analysis,” 16th Edition, AOAC International, Arlington, 1995, Vol. 2.
[15] H. O. Beutler, “D-Fructose, Methods of Enzymatic Analysis,” 3rd Edition, Verlag, London.
[16] M. C. Tran and T. M. Cahn, “Biosensors,” Springer, London, 1993.
[17] B. R. Eggins, “Chemical Sensor and Biosensor,” Wiley & Sons, London, 2002.
[18] G. Wagner and G. Guilbault, “Food Biosensor Analysis,” Marck Dekker, New York, 1994.
[19] I. H. Boyaci and M. Mutlu, “Measurement of Glucose, Sucrose and Lactose in Food Samples with EnzymeImmobilized Packed-Bed Column Reactors Integrated to an Amperometric Enzyme Electrode,” Nahrung/Food, Vol. 46, No. 3, 2002, 174-178.
[20] F. Mizutani and S. Yabuki, “Rapid Determination of Glucose and Sucrose by an Amperometric Glucose-Sensing Electrode Combined with an Invertase/Mutarotase-Attached Measuring Cell,” Biosensors & Bioelectronics, Vol. 12, No. 9-10, 1997, pp. 1013-1020. doi:10.1016/S0956-5663(97)00057-2
[21] M. Ameyama and O. Adachi, “D-Fructose Dehydrogenase from Gluconobacter Industrius, Membrane-Bound,” Methods in Enzymology, Vol. 89, 1982, pp. 154-159. doi:10.1016/S0076-6879(82)89027-7
[22] M. Ameyama, E. Shinagawa, K. Matsushita and O. Adachi, “D-Fructose Dehydrogenase of Gluconobacter Industrius: Purification, Characterization and Application to Enzymatic Microdetermination of D-Fructose,” Journal of Bacteriology, Vol. 145, No. 2, 1981, pp. 814-823.
[23] Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajno and K. Kano, “Fructose/Dioxygen Biofuel Cell Based on Direct Electron Transfer-Type Bioelectrocatalysis,” Physical Chemistry Chemical Physics, Vol. 9, No. 15, 2007, pp. 1793-1801. doi:10.1039/b617650j
[24] V. L. Davidson and L. H. Jones, “Intermolecular Electron Transfer from Quinoproteins and Its Relevance to Biosensor Technology,” Analytical Chimica Acta, Vol. 249, No. 1, 1991, pp. 235-240. doi:10.1016/0003-2670(91)87028-6
[25] K. Damar and D. O. Demirkol, “Modified Gold Surfaces by Poly(amidoamine)dendrimers and Fructose Dehydrogenase for Mediated Fructose Sensing,” Talanta, Vol. 87, 2011, pp. 67-73. doi:10.1016/j.talanta.2011.09.042

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.