High Temperature and the Ethylene Antagonist 1-Methylcyclopropene Alter Ethylene Evolution Patterns, Antioxidant Responses, and Boll Growth in Gossypium hirsutum


The cotton (Gossypium hirsutum L.) crop experiences high temperatures during flowering and boll development, but information regarding the impact of ethylene inhibition and high temperature on early boll development is limited. The objective of this study was to determine the effects of high temperature and the anti-ethylene compound 1-methylcy-cloprone (1-MCP) on G. hirsutum boll development. Treatments consisted of temperature regime (38/20?C and 30/ 20?C), 1-MCP treatment, and days past anthesis (DPA). High temperature decreased ethylene synthesis by 61% at 2 DPA, and 1-MCP caused a 40% decrease in ethylene production at 1 DPA. Glutathione reductase activity increased under high temperature, whereas superoxide dismutase activity (SOD) and membrane peroxidation (malondialdehyde content) remained unchanged. 1-MCP treatment did not affect GR activity in developing bolls. High temperature and 1-MCP treatment increased the weight of cotton bolls collected 8 DPA with an increase of 0.7 and 1 g, respectively. We propose that increased GR activity in bolls exposed to high temperature may mitigate oxidative damage. Additionally, we conclude that ethylene inhibition (either high temperature or 1-MCP-induced) immediately after flowering (1 or 2 DPA) could potentially have positive impacts on early boll growth.

Share and Cite:

E. Kawakami, D. Oosterhuis, J. Snider and T. FitzSimons, "High Temperature and the Ethylene Antagonist 1-Methylcyclopropene Alter Ethylene Evolution Patterns, Antioxidant Responses, and Boll Growth in Gossypium hirsutum," American Journal of Plant Sciences, Vol. 4 No. 7, 2013, pp. 1400-1408. doi: 10.4236/ajps.2013.47171.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. M. Oosterhuis, “Day or Night High Temperatures: A Major Cause of Yield Variability,” Cotton Grower, Vol. 46, 2002, pp. 8-9.
[2] W. T. Pettigrew, “The Effect of Higher Temperatures on Cotton Lint Yield Production and Fiber Quality,” Crop Science, Vol. 48, No. 1, 2008, pp. 278-285. doi:10.2135/cropsci2007.05.0261
[3] K. R. Reddy, H. F. Hodges and V. R. Reddy, “Temperature Effects on Cotton Fruit Retention,” Agronomy Journal, Vol. 84, No. 1, 1992, pp. 26-30. doi:10.2134/agronj1992.00021962008400010006x
[4] D. Zhao, K. R. Reddy, V. G. Kakani, S. Koti and W. Gao, “Physiological Causes of Cotton Fruit Abscission under Conditions of High Temperature and Enhanced Ultraviolet-B Radiation,” Physiologia Plant, Vol. 124, No. 2, 2005, pp. 189-199. doi:10.1111/j.1399-3054.2005.00491.x
[5] J. J. Burke, J. Velten and M. J. Oliver, “In Vitro Analysis of Cotton Pollen Germination,” Agronomy Journal, Vol. 96, No. 2, 2004, pp. 359-368. doi:10.2134/agronj2004.0359
[6] J. L. Snider, D. M. Oosterhuis, B. W. Skulman and E. M. Kawakami, “Heat Stress-Induced Limitations to Reproductive Success in Gossypium hirsutum,” Physiologia Plant, Vol. 137, No. 2, 2009, pp. 125-138. doi:10.1111/j.1399-3054.2009.01266.x
[7] J. L. Snider, D. M. Oosterhuis and E. M. Kawakami, “Diurnal Pollen Tube Growth Rate Is Slowed by High Temperature in Field-Grown Gossypium hirsutum Pistils,” Journal of Plant Physiology, Vol. 168, No. 5, 2011, pp. 441-448. doi:10.1016/j.jplph.2010.08.003
[8] J. L. Snider, D. M. Oosterhuis and E. M. Kawakami, “Mechanisms of Reproductive Thermotolerance in Gossypium hirsutum: The Effect of Genotype and Exogenous Calcium Application,” Journal of Agronomy and Crop Science, Vol. 197, No. 3, 2011, pp. 228-236. doi:10.1111/j.1439-037X.2010.00457.x
[9] J. L. Snider, D. M. Oosterhuis, D. A. Loka and E. M. Kawakami, “High Temperature Limits in Vivo Pollen Tube Growth Rates by Altering Diurnal Carbohydrate Balance in Field-Grown Gossypium hirsutum Pistils,” Journal of Plant Physiology, Vol. 168, No. 11, 2011, pp. 1168-1175. doi:10.1016/j.jplph.2010.12.011
[10] S. M. Schrader, R. R. Wise, W. F. Wacholtz, D. R. Ort and T. D. Sharkey, “Thylakoid Membrane Responses to Moderately High Leaf Temperature in Pima Cotton,” Plant, Cell & Environment, Vol. 27, No. 6, 2004, pp. 725-735. doi:10.1111/j.1365-3040.2004.01172.x
[11] J. L. Snider, D. M. Oosterhuis and E. M. Kawakami, “Genotypic Differences in Thermotolerance Are Dependent upon Pre-Stress Capacity for Antioxidant Protection of the Photosynthetic Apparatus in Gossypium hirsutum,” Physiologia Plant, Vol. 138, No. 3, 2010, pp. 268-277. doi:10.1111/j.1399-3054.2009.01325.x
[12] K. M. Brown, “Ethylene and Abscission,” Physiologia Plant, Vol. 100, No. 3, 1997, pp. 567-576. doi:10.1111/j.1399-3054.1997.tb03062.x
[13] F. B. Abeles, P. W. Morgan and M. E. Saltveit Jr., “Ethylene in Plant Biology,” 2nd Editon, San Diego, Academic, 1992.
[14] Y. H. Shi, S. W. Zhu, X. Z. Mao, J. X. Feng, Y. M. Qin, L. Zhang, J. Cheng, L. P. Wei, Z. Y. Wang and Y. X. Zhu, “Transcriptome Profiling, Molecular Biological, and Physiological Studies Reveal a Major Role for Ethylene in Cotton Fiber Elongation,” Plant Cell, Vol. 18, No. 3, 2006, pp. 651-664. doi:10.1105/tpc.105.040303
[15] A. M. Stewart, K. L. Edmisten and R. Wells, “Boll Openers in Cotton: Effectiveness and Environmental Influences,” Field Crops Research, Vol. 67, No. 1, 2000, pp. 83-90. doi:10.1016/S0378-4290(00)00093-9
[16] G. Guinn, “Fruit Age and Changes in Abscisic Acid Content, Ethylene Production, and Abscission Rate of Cotton Fruits,” Plant Physiology, Vol. 69, No. 2, 1982, pp. 349-352. doi:10.1104/pp.69.2.349
[17] J. A. Lipe and P. W. Morgan, “Ethylene: Role in Fruit Abscission and Dehiscence Process,” Plant Physiology, Vol. 50, No. 6, 1972, pp. 759-764. doi:10.1104/pp.50.6.759
[18] J. G. Scandalios, “Oxygen Stress and Superoxide Dismutases,” Plant Physiology, Vol. 101, No. 1, 1992, pp. 7-12.
[19] J. J. Lee, A. W. Woodward and Z. J. Chen, “Gene Expression and Early Events in Cotton Fibre Development,” Annals of Botany, Vol. 100, No. 7, 2007, pp. 1391-1401. doi:10.1093/aob/mcm232
[20] J. M. D. Stewart, “Integrated Events in the Flower and Fruit,” In: J. R. Mauney and J. M. D. Stewart, Ed., Cotton Physiology, The Cotton Foundation, Memphis, 1986, pp. 261-300.
[21] A. M. Schubert, C. R. Benedict and R. J. Kohel, “Carbohydrate Distribution in Bolls,” In: J. R. Mauney and J. M. D. Stewart, Ed., Cotton Physiology, The Cotton Foundation, Memphis, 1986, pp. 311-324.
[22] A. B. Bleecker and H. Kende, “Ethylene: A Gaseous Signal Molecule in Plants,” Annual Review of Cell and Developmental Biology, Vol. 16, 2000, pp. 1-18. doi:10.1146/annurev.cellbio.16.1.1
[23] S. M. Blankenship and J. M. Dole, “1-Methylcyclopropene: A Review,” Postharvest Biology and Technology, Vol. 28, No. 1, 2003, pp. 1-25. doi:10.1016/S0925-5214(02)00246-6
[24] D. B. Hays, J. H. Do, R. E. Manson, G. Morgan and S. A. Finlayson, “Heat Stress Induced Ethylene Production in Developing Wheat Grains Induces Kernel Abortion and Increase Maturation in Susceptible Cultivar,” Plant Science, Vol. 172, No. 3, 2007, pp. 1113-1123. doi:10.1016/j.plantsci.2007.03.004
[25] E. M. Kawakami, D. M. Oosterhuis and J. L. Snider, “1-Methylcyclopropene Effects on the Physiology and Yield of Field-Grown Cotton,” Journal of Cotton Science, Vol. 14, 2010, pp. 233-239.
[26] E. M. Kawakami, D. M. Oosterhuis and J. L. Snider, “Physiological Effects of 1-Methylcyclopropene on WellWatered and Water-Stressed Cotton Plants,” Journal of Plant Growth Regulation, Vol. 29, No. 3, 2010, pp. 280288. doi:10.1007/s00344-009-9134-3
[27] M. Djanaguiraman and P. V. V. Prasad, “Ethylene Production under High Temperature Stress Causes Premature Leaf Senescence in Soybean,” Functional Plant Biology, Vol. 37, No. 11, 2010, pp. 1071-1084. doi:10.1071/FP10089
[28] J. Larkindale and B. Huang, “Thermotolerance and Antioxidant Systems in Agrostis stolonifera: Involvement of Salicylic Acid, Abscisic Acid, Calcium, Hydrogen Peroxide, and Ethylene,” Journal of Plant Physiology, Vol. 161, No. 4, 2004, pp. 405-413. doi:10.1078/0176-1617-01239
[29] S. K. Gomez, D. M. Oosterhuis, S. N. Rajguru and D. R. Johnson, “Foliar Antioxidant Enzyme Responses in Cotton after Aphid Herbivory,” Journal of Cotton Science, Vol. 8, 2004, pp. 99-104.
[30] M. Schaedle and J. A. Bassham, “Chloroplast Glutathione Reductase (in Spinach),” Plant Physiology, Vol. 59, No. 5, 1977, pp. 1011-1012. doi:10.1104/pp.59.5.1011
[31] Y. Lu and L. Y. Foo, “Antioxidant Activities of Polyphenols from Sage (Salvia officinalis),” Food Chemistry, Vol. 75, No. 2, 2001, pp. 197-202. doi:10.1016/S0308-8146(01)00198-4
[32] R. L. Heath and L. Packer, “Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation,” Archives of Biochemistry and Biophysics, Vol. 125, 1968, pp. 180-198.
[33] R. J. Field, “A Relationship between Membrane Permeability and Ethylene Production at High Temperature in Leaf Tissue of Phaseoulus vulgaris L.,” Annals of Botany, Vol. 48, 1981, pp. 33-39.
[34] M. E. Saltveit Jr. and D. R. Dilley, “Rapidly Induced Wound Ethylene from Excised Segments of Etiolated Pisum sativum L., cv. Alaska,” Plant Physiology, Vol. 61, No. 4, 1978, pp. 675-679. doi:10.1104/pp.61.4.675
[35] N. Murata and D. A. Los, “Membrane Fluidity and Temperature Perception,” Plant Physiology, Vol. 115, 1997, pp. 875-879.
[36] N. Cheikh and R. J. Jones, “Disruption of Maize Kernel Growth and Development by Heat Stress,” Role of Cytokinin/Abscisic Acid Balance,” Plant Physiology, Vol. 106, 1994, pp. 45-51.
[37] R. E. Sharp, “Interaction with Ethylene: Changing Views on the Role of Abscisic Acid in Roots and Shoot Growth Responses to Water Stress,” Plant, Cell & Environment, Vol. 25, No. 2, 2002, pp. 211-222. doi:10.1046/j.1365-3040.2002.00798.x
[38] R. Pierik, R. Sasidharan and L. A. C. Voesenek, “Growth Control by Ethylene: Adjusting Phenotypes to the Environment,” Journal of Plant Growth Regulation, Vol. 26, No. 2, 2007, pp. 188-200. doi:10.1007/s00344-006-0124-4
[39] H. Klee and D. Tieman, “The Tomato Ethylene Receptor Gene Family: Form and Function,” Plant Physiology, Vol. 115, No. 3, 2002, pp. 336-341. doi:10.1034/j.1399-3054.2002.1150302.x
[40] B. M. Binder and A. B. Bleecker, “A Model for Ethylene Receptor Function and 1-Methylcyclopropene Action,” Acta Horticulturae, Vol. 628, 2003, pp. 177-187.
[41] S. Selvarajah, A. D. Bauchot and P. J. John, “Internal Browning in Cold-Stored Pineapples Is Suppressed by a Postharvest Application of 1-Methylcyclopropene,” Postharvest Biology and Technology, Vol. 23, No. 2, 2001, pp. 167-170. doi:10.1016/S0925-5214(01)00099-0
[42] E. D. Mullins, T. G. McCollum and R. E. McDonald, “Consequences on Ethylene Receptor Sites in Disease Non-Climateric Fruit,” Postharvest Biology and Technology, Vol. 19, No. 2, 2000, pp. 155-164. doi:10.1016/S0925-5214(00)00077-6
[43] W. Jiang, Q. Sheng, X. J. Zhou, M. J. Zhang and X. J. Liu, “Regulation of Detached Coriander Leaf Senescence by 1-Methylcyclopropene and Ethylene,” Postharvest Biology and Technology, Vol. 26, No. 3, 2002, pp. 339-345. doi:10.1016/S0925-5214(02)00068-6
[44] J. B. Golding, D. Shearer, S. G. Wyllie and W. B. McGlasson, “Application of 1-MCP and Propylene to Identify Ethylene-Dependent Ripening Processes in Mature Banana Fruit,” Postharvest Biology and Technology, Vol. 14, No. 1, 1998, pp. 87-98. doi:10.1016/S0925-5214(98)00032-5
[45] R. P. Singh, P. V. V. Prasad, K. Sunita, S. N. Giri and K. R. Reddy, “Influence of High Temperature and Breeding for Heat Tolerance in Cotton: A Review,” Advances in Agronomy, Vol. 93, 2007, pp. 313-385. doi:10.1016/S0065-2113(06)93006-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.