Rice Husk Biochar Influences Seedling Emergence of Junglerice (Echinochloa colona) and Herbicide Efficacy


The use of carbonized rice husk biochar improves the fertility and productivity of poor soils in rice-based cropping systems. However, biochar may also influence weed seedling emergence and the efficacy of soil-applied herbicides. Experiments were conducted in a screenhouse to evaluate the effect of biochar rates (0, 20, 40, and 80 t·ha?1) and seed burial depth (0, 1, and 2 cm) on seedling emergence of junglerice (Echinochloa colona) and the effect of biochar rates and pendimethalin (0, 500, 1000, and 1500 g·a.i.·ha?1) and pretilachlor doses (0, 300, 600, and 900 g·a.i.·ha?1) on seedling emergence and seedling biomass of junglerice. Data were analyzed using nonlinear regression. The burial depth to inhibit 50% of maximum seedling emergence was 0.76 cm when biochar was not added to soil and the depth increased with an increase in biochar rates for soil. Similarly, compared with the soil with no biochar, the use of bichoar increased the pretilachlor dose to inhibit 50% of maximum emergence or biomass. The pretilachlor dose to inhibit 50% of maximum biomass of junglerice was 100, 130, 240, and 240 g·ha?1 when biochar was added at 0, 20, 40, and 80 t·ha?1. However, the efficacy of pendimethalin was not influenced by biochar rate. The results of this study suggest that rice husk biochar may increase weed seedling emergence from deeper burial depths and may decrease the efficacy of some soil-applied herbicides.

Share and Cite:

B. Chauhan, "Rice Husk Biochar Influences Seedling Emergence of Junglerice (Echinochloa colona) and Herbicide Efficacy," American Journal of Plant Sciences, Vol. 4 No. 7, 2013, pp. 1345-1350. doi: 10.4236/ajps.2013.47164.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. M. Haefele, C. Knoblauch, M. Gummert, Y. Konboon and S. Koyama, “Black Carbon (Biochar) in Rice-Based Systems: Characteristics and Opportunities,” In: W. I. Woods, W. G. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins and L. Rebellato, Eds., Amazonian Dark Earths: Wim Sombroek’s Vision, Springler Science + Business Media B.V., Berlin, 2009, pp. 445-463.
[2] Z. M. Solaiman, D. V. Murphy and L. K. Abbott, “Biochars Influence Seed Germination and Early Growth of Seedlings,” Plant and Soil, Vol. 353, No. 1-2, 2012, pp. 273-287. doi:10.1007/s11104-011-1031-4
[3] J. Lehmann, “Bio-Energy in the Black,” Frontiers in Ecology and the Environment, Vol. 5, No. 3, 2007, pp. 81-387. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
[4] E. R. Graber, L. Tsechansky, Z. Gerstl and B. Lew, “High Surface Area Biochar Negatively Impacts Herbicide Efficacy,” Plant and Soil, Vol. 353, No. 1-2, 2012, pp. 95106. doi:10.1007/s11104-011-1012-7
[5] D. L. Jones, G. Edwards-Jones and D. V. Murphy, “Biochar Mediated Alterations in Herbicide Breakdown and Leaching in Soil,” Soil Biology & Biochemistry, Vol. 43, No. 4, 2011, pp. 804-813. doi:10.1016/j.soilbio.2010.12.015
[6] B. S. Chauhan, “Weed Ecology and Weed Management Strategies for Dry-Seeded Rice in Asia,” Weed Technology, Vol. 26, No. 1, 2012, pp. 1-13. doi:10.1614/WT-D-11-00105.1
[7] B. S. Chauhan, G. Mahajan, V. Sardana, J. Timsina and M. L. Jat, “Productivity and Sustainability of the RiceWheat Cropping System in the Indo-Gangetic Plains of the Indian Subcontinent: Problems, Opportunities, and Strategies,” Advances in Agronomy, Vol. 117, 2012, pp. 315-369. doi:10.1016/B978-0-12-394278-4.00006-4
[8] S. Pandey and L. Velasco, “Trends in Crop Establishment Methods in Asia and Research Issues,” In: K. Toriyama, K. L. Heong and B. Hardy, Eds., Rice Is Life: Scientific Perspectives for the 21st Century, International Rice Research Institute, Los Banos, 2005, pp. 178-181.
[9] T. P. Tuong and B. A. M. Bouman, “Rice Production in Water-Scarce Environments,” In: J. W. Kijne, R. Barker and D. Molden, Eds., Water Productivity in Agriculture: Limits and Opportunities for Improvements, CABI Publishing, Wallingford, 2003, pp. 53-67.
[10] B. S. Chauhan, V. P. Singh, A. Kumar and D. E. Johnson, “Relations of Rice Seeding Rates to Crop and Weed Growth in Aerobic Rice,” Field Crops Research, Vol. 121, No. 1, 2011, pp. 105-115. doi:10.1016/j.fcr.2010.11.019
[11] L. Van Zwieten, S. Kimber, S. Morris, K. Y. Chan, A. Downie, J. Rust and A. Cowie, “Effects of Biochar from Slow Pyrolysis of Papermill Waste on Agronomic Performance and Soil Fertility,” Plant and Soil, Vol. 327, No. 1-2, 2010, pp. 235-246. doi:10.1007/s11104-009-0050-x
[12] H. F. Free, C. R. McGill, J. S. Rowarth and M. J. Hedley, “The Effect of Biochars on Maize (Zea mays) Germination,” New Zealand Journal of Agricultural Research, Vol. 53, No. 1, 2010, pp. 1-4. doi:10.1080/00288231003606039
[13] J. M. Novak, W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts and M. A. S. Niandou, “Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil,” Soil Science, Vol. 174, No. 2, 2009, pp. 105-112. doi:10.1097/SS.0b013e3181981d9a
[14] WSSA, “Herbicide Handbook,” 8th Editon, W. K. Vencill, Ed., Weed Science Society of America, Lawrence, 2002.
[15] B. S. Chauhan and S. B. Abugho, “Effect of Growth Stage on the Efficacy of Postemergence Herbicides on Four Weed Species of Direct-Seeded Rice,” The Scientific World Journal, Vol. 2012, 2012, Article ID: 123071s.
[16] J. Lehmann and S. Joseph, “Biochar for Environmental Management: Science and Technology,” Earthscan Ltd., London, 2009.
[17] B. S. Chauhan, “Ecology and Management of Weeds under No-Till in Southern Australia,” The University of Adelaide, Adelaide, 2006.
[18] B. S. Chauhan and D. E. Johnson, “Germination Ecology of Chinese Sprangletop (Leptochloa chinensis) in the Philippines,” Weed Science, Vol. 56, No. 6, 2008, pp. 820-825. doi:10.1614/WS-08-070.1
[19] B. S. Chauhan and D. E. Johnson, “Ludwigia hyssopifolia Emergence and Growth as Affected by Light, Burial Depth and Water Management,” Crop Protection, Vol. 28, No. 10, 2009, pp. 887-890. doi:10.1016/j.cropro.2009.05.005
[20] H. L. Wang, K. D. Lin, Z. N. Hou, B. Richardson and J. Gan, “Sorption of the Herbicide Terbuthylazine in Two New Zealand Forest Soils Amended with Biosolids and Biochars,” Journal of Soils and Sediments, Vol. 10, No. 2, 2010, pp. 283-289. doi:10.1007/s11368-009-0111-z
[21] Y. N. Yang, G. Y. Sheng and M. S. Huang, “Bioavailability of Diuron in Soil Containing Wheat-Straw-Derived Char,” Science Total Environment, Vol. 354, No. 2-3, 2006, pp. 170-178. doi:10.1016/j.scitotenv.2005.01.026
[22] X. Y. Yu, G. G. Ying and R. S. Kookana, “Reduced Plant Uptake of Pesticides with Biochar Additions to Soil,” Chemosphere, Vol. 76, No. 5, 2009, pp. 665-671. doi:10.1016/j.chemosphere.2009.04.001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.