High yield expression of proteins in E. coli for NMR studies


In recent years, high yield expression of proteins in E. coli has witnessed rapid progress with developments of new methodologies and technologies. An important advancement has been the development of novel recombinant cloning approaches and protocols to express heterologous proteins for Nuclear Magnetic Resonance (NMR) studies and for isotopic enrichment. Isotope labeling in NMR is necessary for rapid acquisition of high dimensional spectra for structural studies. In addition, higher yield of proteins using various solubility and affinity tags has made protein over-expression cost-effective. Taken together, these methods have opened new avenues for structural studies of proteins and their interactions. This article deals with the different techniques that are employed for over-expression of proteins in E. coli and different methods used for isotope labeling of proteins vis-à-vis NMR spectroscopy.

Share and Cite:

Mondal, S. , Shet, D. , Prasanna, C. and Atreya, H. (2013) High yield expression of proteins in E. coli for NMR studies. Advances in Bioscience and Biotechnology, 4, 751-767. doi: 10.4236/abb.2013.46099.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wüthrich, K. (1986) NMR of proteins and nucleic acids, Wiley, New York.
[2] Atreya, H.S. (2012) Isotope labeling in biomolecular NMR. Springer, Netherlands. doi:10.1007/978-94-007-4954-2
[3] Jana, S. and Deb, J.K. (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Applied Microbiology and Biotechnology, 67, 289-298. doi:10.1007/s00253-004-1814-0
[4] Studier, F.W. (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 41, 207-234. doi:10.1016/j.pep.2005.01.016
[5] Makrides, S.C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews, 60, 512-538.
[6] Burgess-Brown, N.A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U. and Gileadi, O. (2008) Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expression and Purification, 59, 94-102. doi:10.1016/j.pep.2008.01.008
[7] Sivashanmugam, A., Murray, V., Cui, C.X., Zhang, Y.H., Wang, J.J. and Li, Q.Q. (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Science, 18, 936-948. doi:10.1002/pro.102
[8] Graslund, S., Nordlund, P., Weigelt, J., Bray, J., Hallberg, B.M., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., Dhe-Paganon, S., Park, H.W., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S.H., Rao, Z., Shi, Y., Terwilliger, T.C., Kim, C.Y., Hung, L.W., Waldo, G.S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J.L., Stevens, R.C., Lesley, S.A., Wilson, I.A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M.I., Eschenfeldt, W.H., Kim, Y., Stols, L., Wu, R., Zhou, M., Burley, S.K., Emtage, J.S., Sauder, J. M.,Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S.C., Bonanno, J.B., Fiser, A., Swaminathan, S., Studier, F.W., Chance, M.R., Sali, A., Acton, T.B., Xiao, R., Zhao, L., Ma, L.C., Hunt, J.F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C.K., Wang, D.Y., Wang, H., Jiang, M., Montelione, G.T., Stuart, D.I., Owens, R.J., Daenke, S., Schutz, A., Heinemann, U., Yokoyama, S., Bussow, K. and Gunsalus, K.C., (2008) Protein production and purification. Nature Methods, 5, 135-146. doi:10.1038/nmeth.f.202
[9] Li, Z.P., Kessler, W., van den Heuvel, J. and Rinas, U. (2011) Simple defined autoinduction medium for highlevel recombinant protein production using T7-based Escherichia coli expression systems. Applied Microbiology and Biotechnology, 91, 1203-1213. doi:10.1007/s00253-011-3407-z
[10] Goto, N.K. and Kay, L.E. (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Current Opinion in Structural Biology, 10, 585-592. doi:10.1016/S0959-440X(00)00135-4
[11] Marley, J., Lu, M. and Bracken, C. (2001) A method for efficient isotopic labeling of recombinant proteins. Journal of Biomolecular NMR, 20, 71-75. doi:10.1023/A:1011254402785
[12] Krause, M., Ukkonen, K., Haataja, T., Ruottinen, M., Glumoff, T., Neubauer, A., Neubauer, P. and Vasala, A. (2010) A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microbial Cell Factories, 9, 1-11.
[13] Pinsach, J., de Mas, C., Lopez-Santin, J., Striedner, G. and Bayer, K. (2008) Influence of process temperature on recombinant enzyme activity in Escherichia coli fed-batch Cultures. Enzyme and Microbial Technology, 43, 507-512. doi:10.1016/j.enzmictec.2008.08.007
[14] Fong, B.A. and Wood, D.W. (2010) Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation. Microbial Cell Factories, 9, 1-11.
[15] Tripathi, N.K., Sathyaseelan, K., Jana, A.M. and Rao, P.V.L. (2009) High Yield production of heterologous proteins with Escherichia coli. Defence Science Journal, 59, 137146.
[16] Qing, G.L., Ma, L.C., Khorchid, A., Swapna, G.V.T., Mal, T.K., Takayama, M.M., Xia, B., Phadtare, S., Ke, H.P., Acton, T., Montelione, G.T., Ikura, M. and Inouye, M. (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnology, 22, 877882. doi:10.1038/nbt984
[17] Bae, W., Jones, P.G. and Inouye, M. (1997) CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. Journal of Bacteriology, 179, 7081-7088.
[18] Kobayashi, H., Yoshida, T. and Inouye, M. (2009) Significant enhanced expression and solubility of human proteins in Escherichia coli by fusion with protein S from Myxococcus xanthus. Applied and Environmental Microbiology, 75, 5356-5362. doi:10.1128/AEM.00691-09
[19] Ducka, P., Eckhard, U., Schonauer, E., Kofler, S., Gottschalk, G., Brandstetter, H. and Nuss, D. (2009) A universal strategy for high-yield production of soluble and functional clostridial collagenases in E. coli. Applied Microbiology and Biotechnology, 83, 1055-1065. doi:10.1007/s00253-009-1953-4
[20] Lee, M.S., Hseu, Y.C., Lai, G.H., Chang, W.T., Chen, H.J., Huang, C.H., Wang, M.Y., Kao, J.Y., You, B.J., Lin, W.H., Lien, Y.Y. and Lin, M.K. (2011) High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development. Microbial Cell Factories, 10, 1-11.
[21] Das, K.M.P., Banerjee, S., Shekhar, N., Damodaran, K., Nair, R., Somani, S., Raiker, V.P., Jain, S. and Padmanabhan, S. (2011) Cloning, soluble expression and purification of high yield recombinant hGMCSF in Es-che-richia coli. International Journal of Molecular Sciences, 12, 2064-2076. doi:10.3390/ijms12032064
[22] Swain, M., Slomiany, M.G., Rosenweig, S.A. and Atreya, H.S. (2010) High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2. Archives of Biochemistry and Biophysics, 501, 195-200. doi:10.1016/j.abb.2010.06.006
[23] Zhou, P. and Wagner, G. (2010) Overcoming the solubility limit with solubility-enhancement tags: Successful applications in biomolecular NMR studies. Journal of Biomolecular NMR, 46, 23-31. doi:10.1007/s10858-009-9371-6
[24] Esposito, D. and Chatterjee, D.K. (2006) Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnol-ogy, 17, 353-358. doi:10.1016/j.copbio.2006.06.003
[25] Catanzariti, A.M., Soboleva, T.A., Jans, D.A., Board, P.G. and Baker, R.T. (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Science, 13, 1331-1339. doi:10.1110/ps.04618904
[26] Kotzsch, A., Vernet, E. Hammarstrom, M., Berthelsen, J., Weigelt, J., Graslund, S. and Sundstrom, M. (2011) A secretory system for bacterial production of high-profile protein targets. Protein Science, 20, 597-609. doi:10.1002/pro.593
[27] Narayanan, A., Ridilla, M. and Yernool, D.A. (2011) Restrained expression, a method to overproduce toxic membrane proteins by exploiting operator-repressor interactions. Protein Science, 20, 51-61. doi:10.1002/pro.535
[28] Yi, S.L., Brickenden, A. and Choy, W.Y. (2008) A new protocol for high-yield purification of recombinant human prothymosin alpha expressed in Escherichia coli for NMR studies. Protein Expression and Purification, 57, 1-8. doi:10.1016/j.pep.2007.09.005
[29] Chaga, G., Bochkariov, D.E., Jokhadze, G.G., Hopp, J. and Nelson, P. (1999) Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt (II)carboxymethylaspartate crosslinked agarose. Journal of Chromatography A, 864, 247-256. doi:10.1016/S0021-9673(99)01008-0
[30] Chatterjee, S., Schoepe, J., Lohmer, S. and Schomburg, D. (2005) High level expression and single-step purification of hexahistidine-tagged L-2 hydroxyisocaproate dehydrogenase making use of a versatile expression vector set. Protein Expression and Purification, 39, 137-143. doi:10.1016/j.pep.2004.08.019
[31] Ratnala, V.R.P., Swarts, H.G.P., VanOostrum, J., Leurs, R., DeGroot, H.J.M., Bakker, R.A. and DeGrip, W.J. (2004) Large-scale overproduction, functional purification and ligand affinities of the His-tagged human histamine H1 receptor. European Journal of Biochemistry, 271, 26362646. doi:10.1111/j.1432-1033.2004.04192.x
[32] Scheich, C., Sievert, V. and Bussow, K. (2003) An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography. BMC Biotechnology, 3, 1-8.
[33] Smyth, D.R., Mrozkiewicz, M.K., McGrath, W.J., Listwan, P. and Kobe, B. (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Science, 12, 13131322. doi:10.1110/ps.0243403
[34] Purbey, P.K., Jayakumar, P.C., Deepalakshmi, P.D., Patole, M.S. and Galande, S. (2005) GST fusion vector with caspase-6 cleavage site for removal of fusion tag during column purification. BioTechniques, 38, 360-366. doi:10.2144/05383BM03
[35] Fox, J.D., Routzahn, K.M., Bucher, M.H. and Waugh, D.S. (2003) Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers. FEBS Letters, 537, 53-57. doi:10.1016/S0014-5793(03)00070-X
[36] Dyson, M.R., Shadbolt, S.P., Vincent, K.J., Perera, R.L. and McCafferty, J. (2004) Production of soluble mammalian proteins in Escherichia coli: Identification of protein features that correlate with successful expression. BMC Biotechnology, 4, 32.
[37] Feher, A., Boross, P., Sperka, T., Oroszlan, S. and Tozser, J. (2004) Expression of the murine leukemia virus protease in fusion with maltose-binding protein in Escherichia coli. Protein Expression and Purification, 35, 62-68. doi:10.1016/j.pep.2004.01.008
[38] Nallamsetty, S. and Waugh, D.S. (2006) Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expression and Purification, 45, 175-182. doi:10.1016/j.pep.2005.06.012
[39] Kim, S. and Lee, S.B. (2008) Soluble expression of archaeal proteins in Escherichia coli by using fusion-partners. Protein Expression and Purifica-tion, 62, 116-119. doi:10.1016/j.pep.2008.06.015
[40] Einhauer, A. and Jungbauer, A. (2001) The FLAGTM peptide, a versatile fusion tag for the purification of recombinant proteins. Journal of Biochemical and Biophysical Methods, 49, 455-465. doi:10.1016/S0165-022X(01)00213-5
[41] Knappik, A. and Pluckthun, A. (1994) An improved affinity tag based on the FLAG (R) peptide for the detection and purification of recombinant antibody fragments. Biotechniques, 17, 754-761.
[42] Slootstra, J.W., Kuperus, D., Pluckthun, A. and Meloen, R.H. (1997) Identification of new tag sequences with differential and selective recognition properties for the antiFLAG monoclonal antibodies M1, M2 and M5. Molecular Diversity, 2, 156-164. doi:10.1007/BF01682203
[43] Terpe, K. (2003) Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 60, 523-533.
[44] Vaillancourt, P., Zheng, C.F., Hoang, D.Q. and Briester, L. (2000) Affinity purification of recombinant proteins fuse to calmodulin or to calmodulin-binding peptides. Applications of Chimeric Genes and Hybrid Proteins, Pt. A, 326, 340-362.
[45] Kato, A., Maki, K., Ebina, T., Kuwajima, K., Soda, K. and Kuroda, Y. (2007) Mutational analysis of protein solubility enhancement using short peptide tags. Biopolymers, 85, 12-18. doi:10.1002/bip.20596
[46] Zhang, Y.B., Howitt, J., McCorkle, S., Lawrence, P., Springer, K. and Freimuth, P. (2004) Protein aggregation during over expression limited by peptide extensions with large net negative charge. Protein Expression and Purification, 36, 207-216.
[47] Marblestone, J.G., Edavettal, S.C., Lim, Y., Lim, P., Zuo, X. and Butt, T.R. (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Science, 15, 182-189. doi:10.1110/ps.051812706
[48] Skerra, A. and Schmidt, T.G.M. (2000) Use of the streptag and streptavidin for detection and purification of recombinant proteins. Applications of Chimeric Genes and Hybrid Proteins, Pt. A, 326, 271-304.
[49] Witte, C.P., Noel, L.D., Gielbert, J., Parker, J.E. and Romeis, T. (2004) Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Molecular Biology, 55, 135-147. doi:10.1007/s11103-004-0501-y
[50] Junttila, M.R., Saarinen, S., Schmidt, T., Kast, J. and Westermarck, J. (2005) Single-step Strep-tag (R) purifycation for the isolation and identification of protein complexes from mammalian cells. Proteomics, 5, 1199-1203. doi:10.1002/pmic.200400991
[51] Chong, S.R., Mersha, F.B., Comb, D.G., Scott, M.E., Landry, D., Vence, L.M., Perler, F.B., Benner, J., Kucera, R.B., Hirvonen, C.A., Pelletier, J.J., Paulus, H. and Xu, M.Q. (1997) Single-column purification of free recombinant proteins using a selfcleavable affinity tag derived from a protein splicing element. Gene, 192, 271-281. doi:10.1016/S0378-1119(97)00105-4
[52] Predonzani, A., Arnoldi, F., Lopez-Requena, A. and Burrone, O.R. (2008) In vivo site-specific biotinylation of proteins within the secretory pathway using a single vector system. BMC Biotechnology, 8, 41.
[53] Lichty, J.J., Malecki, J.L., Agnew, H.D., Michelson-Horowitz, D.J. and Tan, S. (2005) Comparison of affinity tags for protein purification. Protein Expression and Purification, 41, 98-105. doi:10.1016/j.pep.2005.01.019
[54] Durst, F.G., Ou, H.D., Lohr, F., Dotsch, V. and Straub, W.E. (2008) The better tag remains unseen. Journal of the American Chemical Society, 130, 14932-14933. doi:10.1021/ja806212j
[55] Smits, S.H.J., Mueller, A., Grieshaber, M.K. and Schmitt, L. (2008) Coenzymeand His-tag-induced crystallization of octopine dehydrogenase. Acta Crystallographica Section F-Structural Biology and Crystallization Communications, 64, 836-839. doi:10.1107/S1744309108025487
[56] Carson, M., Johnson, D.H., McDonald, H., Brouillette, C. and DeLucas, L.J. (2007) His-tag impact on structure. Acta Crystallographica Section D-Biological Crystallography, 63, 295-301. doi:10.1107/S0907444906052024
[57] Walker, P.A., Leong, L.E.C., Ng, P.W.P., Tan, S.H., Waller, S., Murphy, D. and Porter, A.G. (1994) Efficient and rapid affinity purification of proteins using recombinant fusion proteases. Bio-Technology, 12, 601-605. doi:10.1038/nbt0694-601
[58] Arnau, J., Lauritzen, C., Petersen, G.E. and Pedersen, J. (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression and Purification, 48, 1-13. doi:10.1016/j.pep.2005.12.002
[59] Jenny, R.J., Mann, K.G. and Lundblad, R.L. (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expression and Purification, 31, 1-11. doi:10.1016/S1046-5928(03)00168-2
[60] Liew, O.W., Chong, J.P.C., Yandle, T.G. and Brennan, S.O. (2005) Preparation of recombinant thioredoxin fused N-terminal proCNP: Analysis of enterokinase cleavage products reveals new enterokinase cleavage sites. Protein Expression and Purification, 41, 332-340. doi:10.1016/j.pep.2005.03.006
[61] Leong, L.E.C. (1999) The use of recombinant fusion proteases in the affinity purification of recombinant proteins. Molecular Biotechnology, 12, 269-274. doi:10.1385/MB:12:3:269
[62] Hefti, M.H., Van Vugt-Van der Toorn, C.J.G., Dixon, R. and Vervoort, J. (2001) A novel purification method for histidine-tagged proteins containing a thrombin cleavage site. Analytical Biochemistry, 295, 180-185. doi:10.1006/abio.2001.5214
[63] Waugh, D.S. (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expression and Purification, 80, 283-293. doi:10.1016/j.pep.2011.08.005
[64] Kwon, S.Y., Choi, Y.J., Kang, T.H., Lee, K.H., Cha, S.S., Kim, G.H., Lee, H.S., Kim, K.T. and Kim, K.J. (2005) Highly efficient protein expression and purification using bacterial hemoglobin fusion vector. Plasmid, 53, 274-282. doi:10.1016/j.plasmid.2004.11.006
[65] de Marco, A., Casatta, E., Savaresi, S. and Geerlof, A. (2004) Recombinant proteins fused to thermostable partners can be purified by heat incubation. Journal of Biotechnology, 107, 125-133. doi:10.1016/j.jbiotec.2003.10.008
[66] Rubio, V., Shen, Y.P., Saijo, Y., Liu, Y.L., Gusmaroli, G., Dinesh-Kumar, S.P. and Deng, X.W. (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant Journal, 41, 767-778. doi:10.1111/j.1365-313X.2004.02328.x
[67] Waugh, D.S. (2005) Making the most of affinity tags. Trends in Biotechnology, 23, 316-320. doi:10.1016/j.tibtech.2005.03.012
[68] Nirenberg, M. and Matthaei, J.H. (1961) Dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 47, 1588-1602. doi:10.1073/pnas.47.10.1588
[69] Carlson, E.D., Gan, R., Hodgman, C.E. and Jewett, M.C. (2012) Cell-free protein synthesis: Applications come of age. Biotechnology Advances, 30, 1185-1194. doi:10.1016/j.biotechadv.2011.09.016
[70] Savage, D.F., Anderson, C.L., Robles-Colmenares, Y., Newby, Z.E. and Stroud, R.M. (2007) Cell-free complements in vivo expression of the E. coli membrane proteome. Protein Science, 16, 966-976. doi:10.1110/ps.062696307
[71] Ozawa, K., Dixon, N.E. and Otting, G. (2005) Cell-free synthesis of N-15-labeled proteins for NMR studies. Iubmb Life, 57, 615-622. doi:10.1080/15216540500217859
[72] Sawasaki, T., Ogasawara, T., Morishita, R. and Endo, Y. (2002) A cell-free protein synthesis system for highthroughput proteomics. Proceedings of the National Academy of Sciences of the United States of America, 99, 14652-14657. doi:10.1073/pnas.232580399
[73] Vinarov, D.A., Newman, C.L.L. and Markley, J.L. (2006) Wheat germ cell-free platform for eukaryotic protein production. FEBS Journal, 273, 4160-4169. doi:10.1111/j.1742-4658.2006.05434.x
[74] Nakano, H., Tanaka, T., Kawarasaki, Y. and Yamane, T. (1996) Highly productive cell-free protein synthesis system using condensed wheat-germ extract. Journal of Biotechnology, 46, 275-282. doi:10.1016/0168-1656(96)00022-3
[75] Klammt, C., Lohr, F., Schafer, B., Haase, W., Dotsch, V., Ruterjans, H., Glaubitz, C. and Bernhard, F. (2004) High level cell-free expression and specific labeling of integral membrane proteins. European Journal of Biochemistry, 271, 568-580. doi:10.1111/j.1432-1033.2003.03959.x
[76] Jewett, M.C. and Swartz, J.R. (2004) Mimicking the Escherichia coli cytoplasmic environment activates longlived and efficient cell-free protein synthesis. Biotechnology and Bioengineering, 86, 19-26. doi:10.1002/bit.20026
[77] Thomas, J.G., Ayling, A. and Baneyx, F. (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E-coli—To fold or to refold. Applied Biochemistry and Biotechnology, 66, 197238. doi:10.1007/BF02785589
[78] Brinker, A., Pfeifer, G., Kerner, M.J., Naylor, D.J., Hartl, F.U. and Hayer-Hartl, M. (2001) Dual function of protein confinement in chaperonin-assisted protein folding. Cell, 107, 223-233. doi:10.1016/S0092-8674(01)00517-7
[79] Gierasch, L.M., Wang, Z., Hunt, J., Landry, S.J., Weaver, A. and Deisenhofer, J. (1995) Chaperone-substrate interactions. Protein Engineering, 8, 14.
[80] Hayer-Hartl, M.K., Ewalt, K.L. and Hartl, F.U. (1999) On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding. Biological Chemistry, 380, 531-540. doi:10.1515/BC.1999.068
[81] Tanaka, S., Kawata, Y., Otting, G., Dixon, N.E., Matsuzaki, K. and Hoshino, M. (2010) Chaperonin-encapsulation of proteins for NMR. Biochimica Et Biophysica ActaProteins and Proteomics, 1804, 866-871. doi:10.1016/j.bbapap.2009.12.016
[82] Weissman, J.S., Rye, H.S., Fenton, W.A., Beechem, J.M. and Horwich, A.L. (1996) Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell, 84, 481-490. doi:10.1016/S0092-8674(00)81293-3
[83] Baneyx, F. and Mujacic, M. (2004) Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22, 1399-1408. doi:10.1038/nbt1029
[84] Minton, A.P. (2005) Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: Macromolecular crowding and protein stability revisited. Biophysical Journal, 88, 971-985. doi:10.1529/biophysj.104.050351
[85] Nishihara, K., Kanemori, M., Yanagi, H. and Yura, T. (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Applied and Environmental Microbiology, 66, 884-889. doi:10.1128/AEM.66.3.884-889.2000
[86] Crooke, E. and Wickner, W. (1987) Trigger factor: A soluble-protein that folds pro-OmpA into a membrane-assembly-competent form. Proceedings of the National Academy of Sciences of the United States of America, 84, 5216-5220. doi:10.1073/pnas.84.15.5216
[87] Hesterkamp, T., Hauser, S., Lutcke, H. and Bukau, B. (1996) Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America, 93, 4437-4441. doi:10.1073/pnas.93.9.4437
[88] Hartl, F.U. and Hayer-Hartl, M. (2002) Protein folding— Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852-1858. doi:10.1126/science.1068408
[89] Horwich, A.L., Fenton, W.A., Weissman, J.S., Boisvert, D.C., Braig, K. and Sigler, P.B. (1995) Structure and functional-analysis of the chaperonin GroEL. FASEB Journal, 9, A1251.
[90] Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D.C., Joachimiak, A., Horwich, A.L. and Sigler, P.B. (1994) The crystal-structure of the bacterial chaperonin GroEL at 2.8-angstrom. Nature, 371, 578-586. doi:10.1038/371578a0
[91] Hunt, J.F., Weaver, A.J., Landry, S.J., Gierasch, L. and Deisenhofer, J. (1996) The crystal structure of the GroES co-chaperonin at 2.8 angstrom resolution. Nature, 379, 37-45. doi:10.1038/379037a0
[92] Schroder, H., Langer, T., Hartl, F.U. and Bukau, B. (1993) Dnak, dnaj and grpe form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO Journal, 12, 4137-4144.
[93] Laufen, T., Mayer, M.P., Beisel, C., Klostermeier, D., Mogk, A., Reinstein, J. and Bukau, B. (1999) Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proceedings of the National Academy of Sciences of the United States of America, 96, 5452-5457. doi:10.1073/pnas.96.10.5452
[94] Teter, S.A., Houry, W.A., Ang, D., Tradler, T., Rockabrand, D., Fischer, G., Blum, P., Georgopoulos, C. and Hartl, F.U. (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell, 97, 755-765. doi:10.1016/S0092-8674(00)80787-4
[95] Bukau, B., Weissman, J. and Horwich, A. (2006) Molecular chaperones and protein quality control. Cell, 125, 443-451. doi:10.1016/j.cell.2006.04.014
[96] Martin, J., Mayhew, M., Langer, T. and Hartl, F.U. (1993) The reaction cycle of GroEL and GroES in chaperonin-assisted protein-folding. Nature, 366, 228-233. doi:10.1038/366228a0
[97] Inobe, T., Makio, T., Takasu-Ishikawa, E., Terada, T.P. and Kuwajima, K. (2001) Nucleotide binding to the chaperonin GroEL: Non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1545, 160-173. doi:10.1016/S0167-4838(00)00274-0
[98] Hayerhartl, M.K., Ewbank, J.J., Creighton, T.E. and Hartl, F.U. (1994) Conformational specificity of the chaperonin GroEL for the compact folding intermediates of alpha-lactalbumin. EMBO Journal, 13, 3192-3202.
[99] Buchberger, A., Schroder, H., Hesterkamp, T., Schonfeld, H.J. and Bukau, B. (1996) Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. Journal of Molecular Biology, 261, 328-333. doi:10.1006/jmbi.1996.0465
[100] Mogk, A., Mayer, M.P. and Deuerling, E. (2002) Mechanisms of protein folding: Molecular chaperones and their application in biotechnology. Chembiochem, 3, 807-814. doi:10.1002/1439-7633(20020902)3:9<807::AID-CBIC807>3.0.CO;2-A
[101] Fenton, W.A. and Horwich, A.L. (1997) GroEL-mediated protein folding. Protein Science, 6, 743-760. doi:10.1002/pro.5560060401
[102] Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M.K. and Hartl, F.U. (1992) Successive action of dnak, dnaj and GroEL along the pathway of chaperone-mediated protein folding. Nature, 356, 683-689. doi:10.1038/356683a0
[103] Baneyx, F. and Nannenga, B.L. (2010) Chaperones: A story of thrift unfolds. Nature Chemical Biology, 6, 880881. doi:10.1038/nchembio.468
[104] Paliy, O. and Gunasekera, T.S. (2007) Growth of Ecoli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Applied Microbiology and Biotechnology, 73, 1169-1172. doi:10.1007/s00253-006-0554-8
[105] Zhang, Z.G., Gosset, G., Barabote, R., Gonzalez, C.S., Cuevas, W.A. and Saier, M.H. (2005) Functional interacttions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. Journal of Bacteriology, 187, 980-990. doi:10.1128/JB.187.3.980-990.2005
[106] Muchmore, D.D., McIntosh, L.P., Russell, C.B., Anderson, D.E. and Dahlquist, F.W. (1989) Expression and nitrogen-15 labelling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods in Enzymology, 177, 44-73. doi:10.1016/0076-6879(89)77005-1
[107] Muchmore, D.C., McIntosh, L.P., Russell, C.B., Anderson, D.E. and Dahlquist, F.W. (1989) Expression and n15 labeling of proteins for proton and n-15 nuclear-magnetic-resonance. Methods in Enzymology, 177, 44-73. doi:10.1016/0076-6879(89)77005-1
[108] Tong, K.I., Yamamoto, M. and Tanaka, T. (2008) A simple method for amino acid selective isotope labeling of recombinant proteins in E-coli. Journal of Biomolecular NMR, 42, 59-67. doi:10.1007/s10858-008-9264-0
[109] Ohki, S. and Kainosho, M. (2008) Stable isotope labeling methods for protein NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 53, 208-226. doi:10.1016/j.pnmrs.2008.01.003
[110] Gardner, K.H. and Kay, L.E. (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annual Review of Biophysics and Biomolecular Structure, 27, 357-406. doi:10.1146/annurev.biophys.27.1.357
[111] Crespi, H.L. and Katz, J.J. (1969) High resolution proton magnetic resonance studies of fully deuterated and iso-tope hybrid proteins. Nature, 224, 560-562. doi:10.1038/224560a0
[112] Katz, J.J. and Crespi, H.L. (1966) Deuterated organisms: Cultivation and uses. Science, 151, 1187-1194. doi:10.1126/science.151.3715.1187
[113] Pachter, R., Arrowsmith, C.H. and Jardetzky, O. (1992) The effect of selective deuteration on magnetization transfers in larger proteins. Journal of Biomolecular NMR, 2, 183-194. doi:10.1007/BF01875529
[114] Kalbitzer, H.R., Leberman, R. and Wittinghofer, A. (1985)1H-NMR spectroscopy on elongation-factor Tu from escherichia-coli. Resolution enhancement by perdeuteration. FEBS Letters, 180, 40-42. doi:10.1016/0014-5793(85)80226-X
[115] Lemaster, D.M. and Richards, F.M. (1988) NMR sequential assignment of escherichia-coli thioredoxin utilizing random fractional deuteriation. Biochemistry, 27, 142150. doi:10.1021/bi00401a022
[116] Torchia, D.A., Sparks, S.W. and Bax, A. (1988) Delineation of alpha-helical domains in deuteriated staphylococcal nuclease by 2D Noe NMR spectroscopy. Journal of the American Chemical Society, 110, 2320-2321. doi:10.1021/ja00215a063
[117] Batey, R.T., Cloutier, N., Mao, H.Y. and Williamson, J.R. (1996) Improved large scale culture of Methylophilus methylotrophus for 13C/15N labeling and random fractional deuteration of ribonucleotides. Nucleic Acids Research, 24, 4836-4837. doi:10.1093/nar/24.23.4836
[118] Agback, P., Maltseva, T.V., Yamakage, S.I., Nilson, F.P.R., Foldesi, A. and Chattopadhyaya, J. (1994) The differences in the T2 relaxation rates of the protons in the partially-deuteriated and fully protonated sugar residues in a large oligo-DNA (NMR-window) gives complementary structural information. Nucleic Acids Research, 22, 1404-1412. doi:10.1093/nar/22.8.1404
[119] Foldesi, A., Yamakage, S.I., Nilsson, F.P.R., Maltseva, T.V. and Chattopadhyaya, J. (1996) The use of non-uniform deuterium labelling ‘NMR-window’ to study the NMR structure of a 21mer RNA hairpin. Nucleic Acids Research, 24, 1187-1194. doi:10.1093/nar/24.7.1187
[120] Kane, J.F. (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia-coli. Current Opinion in Biotechnology, 6, 494-500. doi:10.1016/0958-1669(95)80082-4
[121] Knight, R.D., Freeland, S.J. and Landweber, L.F. (2001) A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biology, 2, 113.
[122] Boycheva, S., Chkodrov, G. and Ivanov, I. (2003) Codon pairs in the genome of Escherichia coli. Bioinformatics, 19, 987-998. doi:10.1093/bioinformatics/btg082
[123] Gustafsson, C., Govindarajan, S. and Minshull, J. (2004) Codon bias and heterologous protein expression. Trends in Biotechnology, 22, 346-353. doi:10.1016/j.tibtech.2004.04.006
[124] Chen, J.Q., Acton, T.B., Basu, S.K., Montelione, G.T. and Inouye, M. (2002) Enhancement of the solubility of proteins overexpressed in Escherichia coli by heat shock. Journal of Molecular Microbiology and Biotechnology, 4, 519-524.
[125] Gouy, M. and Gautier, C. (1982) Codon usage in bacteria: Correlation with gene expressivity. Nucleic Acids Research, 10, 7055-7074. doi:10.1093/nar/10.22.7055
[126] Tao, H., Liu, W.J., Simmons, B.N., Harris, H.K., Cox, T.C. and Massiah, M.A. (2010) Purifying natively folded proteins from inclusion bodies using sarkosyl, triton X-100, and CHAPS. Biotechniques, 48, 61-64. doi:10.2144/000113304

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.