[1]
|
Cao, S.S. and Kaufman, R.J. (2012) Unfolded protein response. Current Biology, 22, R622-R626.
doi:10.1016/j.cub.2012.07.004
|
[2]
|
Walter, P. and Ron, D. (2011) The unfolded protein response: From stress pathway to homeostatic regulation. Science, 334, 1081-1086. doi:10.1126/science.1209038
|
[3]
|
Dominguez, I., Degano, I.R., Chea, K., et al. (2011) CK2alpha is essential for embryonic morphogenesis. Molecular and Cellular Biochemistry, 356, 209-216.
doi:10.1007/s11010-011-0961-8
|
[4]
|
Lou, D.Y., Dominguez, I., Toselli, P., et al. (2007) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Molecular and Cellular Biochemistry, 28, 131-139.
|
[5]
|
Buchou, T., Vernet, M., Blond, O., et al. (2003) Disruption of the regulatory b subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Molecular and Cellular Biochemistry, 23, 908-915. doi:10.1128/MCB.23.3.908-915.2003
|
[6]
|
Lüscher, B. and Litchfield, D.W. (1994) Biosynthesis of casein kinase II in lymphoid cell lines. European Journal of Biochemistry, 220, 521-526.
doi:10.1111/j.1432-1033.1994.tb18651.x
|
[7]
|
Guerra, B., Siemer, S., Boldyreff, B., et al. (1999) Protein kinase CK2: Evidence for a protein kinase CK2b subunit fraction, devoid of the catalytic CK2a subunit, in mouse brain and testicles. FEBS Letters, 462, 353-357.
doi:10.1016/S0014-5793(99)01553-7
|
[8]
|
Stalter, G., Siemer, S., Becht, E., et al. (1994) Asymmetric expression of protein kinase CK2 in human kidney tumors. Biochemical and Bio-physical Research Communications, 202, 141-147. doi:10.1006/bbrc.1994.1904
|
[9]
|
Gabriel, M. and Litchfield, D.W. (2013) Protein kinase CK2: At the crossroad of pathways controlling cell proliferation and survival. In: Pinna, L.A., Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Hoboken, 169189.
|
[10]
|
Trembley, J.H., Wu, J., Unger, G.M., et al. (2013) CK2 suppression of apoptosis and its implication in cancer bi-ology and therapy. In: Pinna, L.A., Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Hoboken, 319-343.
|
[11]
|
Blaydes, J.P. and Hupp, T.R. (1998) DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene, 17, 1045-1052.
doi:10.1038/sj.onc.1202014
|
[12]
|
Gerber, D.A., Sou-quere-Besse, S., Puvion, F., et al. (2000) Heat-induced relocali-zation of protein kinase CK2—Implication of CK2 in the context of cellular stress. Journal of Biological Chemistry, 275, 23919-23926.
doi:10.1074/jbc.M002697200
|
[13]
|
Sayed, M., Kim, S.O., Salh, B.S., et al. (2000) Stressinduced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. Journal of Biological Chemistry, 275, 16569-16573.
doi:10.1074/jbc.M000312200
|
[14]
|
Yamane, K. and Kinsella, T.J. (2005) CK2 inhibits apoptosis and changes its cellular localization following ionizing radiation. Cancer Research, 65, 4362-4367.
doi:10.1158/0008-5472.CAN-04-3941
|
[15]
|
Manni, S., Bran-calion, A., Quotti, T.L., et al. (2012) Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clinical Cancer Research, 18, 1888-1900.
doi:10.1158/1078-0432.CCR-11-1789
|
[16]
|
Faust, M., Jung, M., Günther, J., et al. (2001) Localization of individual subunits of protein kinase CK2 to the endoplasmic reticulum and to the Golgi apparatus. Molecular and Cellular Biochemistry, 227, 73-80.
doi:10.1023/A:1013129410551
|
[17]
|
Gruss, O.J., Feick, P., Frank, R., et al. (1999) Phosphorylation of components of the ER translocation site. European Journal of Biochemistry, 260, 785-793.
doi:10.1046/j.1432-1327.1999.00215.x
|
[18]
|
Götz, C., Müller, A., Montenarh, M., et al. (2009) The ER-membrane-resident Hsp40 ERj1 is a novel substrate for protein kinase CK2. Bio-chemical and Biophysical Research Communications, 388, 637-642.
doi:10.1016/j.bbrc.2009.07.146
|
[19]
|
Ampofo, E., Welker, S., Jung, M., et al. (2013) CK2 phosphorylation of human Sec63 regulates its interaction with Sec62. Biochimica et Biophysica Acta, 1830, 2938-2945.
doi:10.1016/j.bbagen.2012.12.020
|
[20]
|
Hosoi, T., Korematsu, K., Horie, N., et al. (2012) Inhibition of casein kinase 2 mod-ulates XBP1-GRP78 arm of unfolded protein responses in cul-tured glial cells. PLoS. ONE, 7, e40144. doi:10.1371/journal.pone.0040144
|
[21]
|
Meggio, F., Agostinis, P. and Pinna, L.A. (1985) Casein kinases and their protein sub-strates in rat liver cytosol: evidence for their participation in multimolecular systems. Biochimica et Biophysica Acta, 846, 248-256.
doi:10.1016/0167-4889(85)90072-2
|
[22]
|
Dougherty, J.J., Ra-bideau, D.A., Iannotti, A.M., et al. (1987) Identification of the 90 kDa substrate of rat liver type II casein kinase with the heat shock protein which binds steroid receptors. Biochimica et Biophysica Acta, 927, 74-80. doi:10.1016/0167-4889(87)90067-X
|
[23]
|
Miyata, Y. and Ya-hara, I. (1995) Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry, 34, 8123-8129. doi:10.1021/bi00025a019
|
[24]
|
Miyata, Y. and Yahara, I. (2002) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. Journal of Biological Chemistry, 267, 7042-7047.
|
[25]
|
Miyata, Y. (2013) The pivotal role of CK2 in the kinome-targeting Hsp90 chaperone machinery. In: Pinna, L.A. Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Ho-boken, 205-238.
|
[26]
|
Gorman, A.M., Healy, S.J., Jager, R., et al. (2012) Stress management at the ER: Regulators of ER stress-induced apoptosis. Pharmacology and Therpeutics, 134, 306-316.
doi:10.1016/j.pharmthera.2012.02.003
|
[27]
|
Guerra, B. and Issinger, O.-G. (2013) CK2: A global regulator of cell survival. In: Pinna, L.A. Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Hoboken, 239266.
|
[28]
|
Harding, H.P., Zhang, Y. and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397, 271-274.
doi:10.1038/16729
|
[29]
|
Niefind, K. and Battistutta, R. (2013) Structural bases protein kinase CK2 function and inhibition. In: Pinna, L.A. Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Hoboken, 3-75.
|
[30]
|
Sarno, S., Reddy, H., Meggio, F., et al. (2001) Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (casein kinase-2’). FEBS Letters, 496, 44-48. doi:10.1016/S0014-5793(01)02404-8
|
[31]
|
Cozza, G., Mazzo-rana, M., Papinutto, E., et al. (2009) Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochemical Journal, 421, 387-395. doi:10.1042/BJ20090069
|
[32]
|
Ampofo, E., Sokolowsky, T., Götz, C., et al. (2013) Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response. Biochimica et Biophysica Acta: Molecular Cell Research, 1833, 439-451.
|
[33]
|
Schroder, M. and Kaufman, R.J. (2005) The mammalian unfolded protein response. Annual Reviews in Biochemistry, 74, 739-789.
|
[34]
|
Harding, H.P., Novoa, I., Zhang, Y., et al. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell, 6, 10991108. doi:10.1016/S1097-2765(00)00108-8
|
[35]
|
Schneider, C.C., Ampofo, E. and Montenarh, M. (2012) CK2 regulates ATF4 and CHOP transcription within the cellular stress response signalling pathway. Cell Signalling, 24, 1797-1802.
|
[36]
|
Hessenauer, A., Schneider, C.C., Götz, C., et al. (2011) CK2 inhibition induces apoptosis via the ER stress response. Cell Signalling, 23, 145-151.
doi:10.1016/j.cellsig.2010.08.014
|
[37]
|
Ubeda, M. and Habener, J.F. (2000) CHOP gene expression in response to endoplas-mic-reticular stress requires NFY interaction with different domains of a conserved DNA-binding element. Nucleic Acids Research, 28, 49874997. doi:10.1093/nar/28.24.4987
|
[38]
|
Ubeda, M. and Habener, J.F. (2003) CHOP transcription factor phosphorylation by casein kinase 2 inhibits transcriptional activation. Journal of Biological Chemistry, 278, 40514-40520. doi:10.1074/jbc.M306404200
|
[39]
|
Yoshida, H., Matsui, T., Yamamoto, A., et al. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107, 881-891.
doi:10.1016/S0092-8674(01)00611-0
|
[40]
|
Asada, R., Kane-moto, S., Kondo, S., et al. (2011) The signaling from endop-lasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. Journal of Biochemistry, 149, 507-518.
doi:10.1093/jb/mvr041
|