Electromagnetic Nature of Nuclear Energy: Application to H and He Isotopes
B. Schaeffer
7 Rue de l’Ambroisie, Paris, France.
DOI: 10.4236/wjnst.2013.32A001   PDF    HTML     9,522 Downloads   13,820 Views   Citations


The one million times ratio between nuclear and chemical energies is generally attributed to a mysterious strong force, still unknown after one century of nuclear physics. It is now time to reconsider from the beginning the assumptions used, mainly the uncharged neutron and the orbital motion of the nucleons. Except for the long range Coulomb repulsion, the electric and magnetic Coulombs forces between adjoining nucleons are generally assumed to be negligible in the atomic nucleus by the nuclear specialists. The Schrodinger equation with a centrifugal force as in the Bohr model of the atom is unable to predict the binding energy of a nucleus. In contrast, the attractive electric and repulsive magnetic Coulomb forces alone explain quantitatively the binding energies of hydrogen and helium isotopes. For the first time, with analytical formulas, the precision varies between 1 and 30 percent without fitting, adjustment, correction or estimation, proving the electromagnetic nature of the nuclear energy.

Share and Cite:

B. Schaeffer, "Electromagnetic Nature of Nuclear Energy: Application to H and He Isotopes," World Journal of Nuclear Science and Technology, Vol. 3 No. 2A, 2013, pp. 1-8. doi: 10.4236/wjnst.2013.32A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. D. Cook, “Models of the Atomic Nucleus: Unification through a Lattice of Nucleons,” Springer, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-14737-1
[2] R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, “Accurate Nucleon-Nucleon Potential with Charge-Independence Breaking,” Physical Review C, Vol. 51, No. 1, 1995, pp. 38-51. doi:10.1103/PhysRevC.51.38
[3] Lavoisier, “Réflexions sur le Phlogistique,” Mémoires de l'Académie des Sciences, Paris, 1783, p. 505.
[4] M. Born, “Europe and Science,” Bulletin of the Atomic Scientists, Vol. 14, 1958, p. 74.
[5] F. Bloch, “Le moment Magnétique du Neutron,” Annales de l'I.P.H.P. 8, 1938, pp. 63-78.
[6] R. Feynman, R. B. Leighton, M. Sands, “The Feynman Lectures on Physics 2,” Pearson/Addison-Wesley, Reading, 2006.
[7] B. Schaeffer, “Electromagnetic Theory of the Binding Energy of the Hydrogen Isotopes,” Journal of Fusion Energy, Vol. 30, No. 5, 2011, pp. 377-381. doi:10.1007/s10894-010-9365-0
[8] B. Schaeffer, “Ab Initio Calculation of 2H and 4He Binding Energies,” Journal of Modern Physics, Vol. 3, No. 11, 2012, pp. 1709-1715. doi:10.4236/jmp.2012.311210
[9] J. C. Maxwell, “A Treatise on Electricity and Magnetism, Vol. 2,” Oxford University Press, Oxford, 1998.
[10] G. E. Owen, “Introduction to Electromagnetic Theory,” Courier Dover Publications, Oxford, 2003.
[11] K. Yosida, “Theory of Magnetism,” Springer-Verlag, Berlin, 1996.
[12] V. F. Weisskopf and J. M. Blatt, “Theoretical Nuclear Physics,” Courier Dover Publications, Oxford, 1991.
[13] G. Audi, et al., “The NUBASE Evaluation of Nuclear and Decay Properties,” Nuclear Physics A, Vol. 729, No. 1, 2003, pp. 337-676. doi:10.1016/j.nuclphysa.2003.11.003
[14] D. Cortina-Gil and W. Mittig, “Probing Nuclear Forces at the Extreme of Isospin: The 7H Resonance,” Europhysics News, Vol. 41, No. 2, 2010, pp. 23-26.
[15] P. J. Mohr, B. N. Taylor and D. B. Newel, “CODATA Recommended Values of the Fundamental Physical Constants: 2010,” Reviews of Modern Physics, Vol. 84, No. 4, 2012, pp. 1527-1605. doi:10.1103/RevModPhys.84.1527

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.