Phenolic Acid Content and Free Radical-Scavenging Activity of Two Differently Processed Carob Tree (Ceratonia siliqua L.) Pod


The phenolic acids in free phenolic acid (FPHA), methanol-soluble phenolic ester (MSPE), and methanol-soluble phenolic glycoside (MSPG) fractions of two carob products, natural carob-pod flour (CPF) and commercial carob-pod flour (CCPF), were identified and quantified using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Six phenolic acids were identified in the carob flours (gallic acid, protocatechuic acid, gentisic acid, syringic acid, p- coumaric acid, and sinapic acid). Gallic acid was the major phenolic acid; and its concentrations in CCPF were substantially higher than in CPF (135 - 166 and 85.2 - 91.3 mg/g dw, respectively). The concentrations of p-coumaric acid and sinapic acid were also higher in CCPF than in CPF. In contrast, the concentrations of protocatechuic acid and gentisic acid were generally lower in CCPF than in CPF, with the only exception being gentisic acid glycosides. Both carob-pod flours contained almost the same amount of sinapic acid and syringic acid. The total phenolic contents of the FPHA, MSPE, and MSPG fractions of CPF were found to be 44%, 38%, and 69% that of the respective fractions of CCPF. Correspondingly, the FPHA, MSPE, and MSPG fractions of CCPF had higher free radical-scavenging activity (28.4%, 33.1%, and 26.2%, respectively) than the corresponding fractions of CPF (9.2%, 28.0%, and 9.2%, respectively). Notably, the FPHA and MSPG fractions of each sample had very similar scavenging activity while the MSPE fraction always had higher activity. The FPHA and MSPG fractions of CPF had the lowest activities.

Share and Cite:

H. Torun, F. Ayaz, N. Colak, J. Grúz and M. Strnad, "Phenolic Acid Content and Free Radical-Scavenging Activity of Two Differently Processed Carob Tree (Ceratonia siliqua L.) Pod," Food and Nutrition Sciences, Vol. 4 No. 5, 2013, pp. 547-553. doi: 10.4236/fns.2013.45070.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Vauzour, A. Rodriguez-Mateos, G. Corona, M. J. Oruna-Concha and J. P. E. Spencer, “Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action,” Nutrients, Vol. 2, No. 11, 2010, pp. 1106-1131. doi:10.3390/nu2111106
[2] B. Hazra, S. Biswas and N. Mandal, “Antioxidant and Free Radical Scavenging Activity of Spondias pinnata,” BMC Complementary and Alternative Medicine, Vol. 8, No. 63, 2008. doi:10.1186/1472-6882-8-63
[3] F. A. Ayaz, H. Torun, R. H. Glew, Z. D. Bak, L. T. Chuang and R. A. Presley, “Nutrient Content of Carob Pod (Ceratonia siliqua L.) Flour Prepared Commercially and Domestically,” Plant Foods for Human Nutrition, Vol. 64, No. 4, 2009, pp. 286-292. doi:10.1007/s11130-009-0130-3
[4] D. F. Chamberlain, “Ceratonia L.,” In: P. H. David, Ed., Flora of Turkey and the East Aegean Islands, Edinburgh University Press, Edinburgh, 1970.
[5] N. Zografakis and D. Dasenakis, “Biomass in Mediterranean Studies on the Exploitation of Carob for Bioethanol Production,” Commission of the European Communities Directorate General for Energy and Transport, Region of Crete-Regional Energy Agency, 2002.
[6] R. Avallone, M. Plessi, M. Baraldi and A. Monzani, “Determination of Chemical Composition of Carob (Ceratonia siliqua): Protein, Fat, Carbohydrates, and Tannins,” Journal of Food Composition and Analysis, Vol. 10, No. 2, 1997, pp. 166-172.
[7] A. Priolo, M. Lanza, M. Bela, P. Penisi, V. Fasone and L. Biondi, “Reducing the ?mpact of Condensed Tannins in a Diet Based on Carob Pulp Using Two Levels of Polyethylene Glycol: Lamb Growth, Digestion and Meat Quality,” Animal Research, Vol. 51, 2002, pp. 305-313. doi:10.1051/animres:2002026
[8] F. A. Ayaz, H. Torun, S. Ayaz, P. J. Correia, M. Alaiz, C. Sanz, J. Gruz and M. Strnad, “Determination of Chemical Composition of Anotolian Carob Pod (Ceratonia siliqua L.): Sugars, Amino and Organic Acid, Minerals and Phenolic Compounds,” Journal of Food Quality, Vol. 30, No. 6, 2007, pp. 1040-1055. doi:10.1111/j.1745-4557.2007.00176.x
[9] R. W. Owen, R. Haubner, W. E. Hull, G. Erben, B. Spiegelhalder, H. Bartsch and B. Haber, “Isolation and Structure Elucidation of the Major Individual Polyphenols in Carob Fibre,” Food and Chemical Toxicology, Vol. 41, No. 12, 2003, pp. 1727-1738. doi:10.1016/S0278-6915(03)00200-X
[10] M. Papagiannopoulos, H. R. Wollseifen, A. Mellenthin, B. Haber and R. Galensa, “Identification and Quantification of Polyphenols in Carob Fruits (Ceratonia siliqua L.) and Derived Products by HPLC-UV-ESI/MSn,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 12, 2004, pp. 3784-3791. doi:10.1021/jf030660y
[11] N. Ortega, A. Macia, M. P. Romero, E. Trullols, J. R. Morello, N. Angles and M. J. Motilva, “Rapid Determi nation of Phenolic Compounds and Alkoloids of Carob Flour by Improved Liquid Chromatography Tandem Mass Spectrometry,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 16, 2009, pp. 7239-7244. doi:10.1021/jf901635s
[12] E. M. Rakib, H. Chicha, S. Abouricha, M. Alaoui, A. A. Bouli, M. Hansali and R. W. Owen, “Determination of Phenolic Composition of Carob Pods Grown in Different Regions of Morocco,” Journal of Natural Products, Vol. 3, No. 17, 2010, pp. 134-140.
[13] M. Cvikrová, M. Hrubcová, M. Vágner, I. Machácková and J. Eder, “Phenolic Acids and Peroxidase Activity in Alfalfa (Medicago sativa) Embryonic Cultures after Ethephon Treatment,” Physiologia Plantarum, Vol. 91, No. 2, 1994, pp. 226-233. doi:10.1111/j.1399-3054.1994.tb00423.x
[14] M. Joyeux, M., F. Mortier and J. Fleurentin, “Screening of Antiradical, Antilipoperoxidant and Hepatoprotective Effects of 9 Plant-Extracts Used in Caribbean Folk Medi cine,” Phytotherapy Research, Vol. 9, No. 3, 1995, pp. 228-230. doi:10.1002/ptr.2650090316
[15] R. A. Moyer, K. E. Hummer, C. E. Finn, B. Frei, R. E. Wrolstad, “Anthocyanins, Phenolics, and Antioxidant Ca pacity in Diverse Small Fruits: Vaccinium, Rubus, and Ribes,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 3, 2002, pp. 519-525. doi:10.1021/jf011062r
[16] F. A. Ayaz, S. Hayirlioglu-Ayaz, J. Gruz, O. Novak and M. Strnad, “Separation, Characterization, and Quantita tion of Phenolic Acids in a Little-Known Blueberry (Vaccinium arctostaphylos L.) Fruit by HPLC-MS,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 21, 2005, pp. 8116-8122. doi:10.1021/jf058057y
[17] M. Bouaziz, M. Chamkha and S. Sayadi, “Comparative Study on Phenolic Content and Antioxidant Activity during Maturation of the Olive Cultivar Chemlali from Tunisia,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 17, 2004, pp. 5476-5481. doi:10.1021/jf0497004
[18] J. O. Kuti and H. B. Konuru, “Antioxidant Capacity and Phenolic Content in Leaf Extracts of Tree Spinach (Cnidoscolus spp.),” Journal of Agricultural and Food Chemistry, Vol. 52, No. 1, 2004, pp. 117-121. doi:10.1021/jf030246y
[19] T. Beta, S. Nam, J. E. Dexter and H. R. Sapirstein, “Phenolic Content and Antioxidant Activity of Pearled Wheat and Roller-Milled Fractions,” Cereal Chemistry, Vol. 82, No. 4, 2005, pp. 390-393. doi:10.1094/CC-82-0390
[20] C. M. Liyana-Pathirana and F. Shahidi, “Importance of Insoluble-Bound Phenolics to Antioxidant Properties of Wheat,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 4, 2005, pp. 1256-1264. doi:10.1021/jf052556h
[21] R. J. Robbins, “Phenolic Acids in Foods: An Overview of Analytical Methodology,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 10, 2003, pp. 2866-2887. doi:10.1021/jf026182t
[22] I. Ioannou and M. Ghoul, “Biological Activities and Effects of Food Processing on Flavonoids as Phenolic Antioxidants” In: M. Petre, Ed., Advances in Applied Bio technology, InTech, Rijeka, 2012, pp. 101-124.
[23] S. Z. Vi?a and A. R. Chaves, “Effect of Heat Treatment and Refrigerated Storage on Antioxidant Properties of Pre-Cut Celery (Apium graveolens L.),” International Journal of Food Science and Technology, Vol. 43, No. 1, 2008, pp. 44-51. doi:10.1111/j.1365-2621.2006.01380.x
[24] H. Zielinski, A. Mishalska, M. Amigo-Benavent, M. D. Del Castillo and M. K. Piskula, “Changes in Protein Quality and Antioxidant Properties of Buckwheat Seeds and Groats Induced by Roasting,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 11, 2009, pp. 4771-4777. doi:10.1021/jf900313e
[25] M. Zhang, H. Chen, J. Li, Y. Pei and Y. Liang, “Antioxi dant Properties of Tartary Buckwheat Extracts as Af fected by Different Thermal Processing Methods,” LWT Food Science and Technology, Vo. 43, No. 1, 2010, pp. 181-185. doi:10.1016/j.lwt.2009.06.020
[26] P. Sharma and H. S. Gujral, “Effect of Sand Roasting and Microwave Cooking on Antioxidant Activity of Barley,” Food Research International, Vol. 44, No. 1, 2011, pp. 235-240. doi:10.1016/j.foodres.2010.10.030
[27] K. A. Gerard and J. S. Roberts, “Microwave Heating of Apple Mash to Improve Juice Yield and Quality,” LWT Food Science and Technology, Vol. 37, No. 5, 2004, pp. 551-557. doi:10.1016/j.lwt.2003.12.006
[28] N. Chandrasekara and F. Shahidi, “Effect of Roasting on Phenolic Content and Antioxidant Activities of Whole Cashew Nuts, Kernels, and Testa,” Journal of Agricultural and Food Chemistry, Vol. 59, No. 9, 2011, pp. 5006-5014. doi:10.1021/jf2000772
[29] J. Yu, M. Ahmedna and I. Goktepe, “Effects of Processing Methods and Extraction Solvents on Concentration and Antioxidant Activity of Peanut Skin Phenolics,” Food Chemistry, Vol. 90, No. 1-2, 2005, pp. 199-206. doi:10.1016/j.foodchem.2004.03.048
[30] A. Yousif and H. M. Alghzawi, “Processing and Characterization of Carob Powder,” Food Chemistry, Vol. 69, No. 3, 2000, pp. 283-287. doi:10.1016/S0308-8146(99)00265-4
[31] E. Pelvan, C. Alasalvar and S. Uzman, “Effects of Roasting on the Antioxidant Status and Phenolic Profiles of Commercial Turkish Hazelnut Varieties (Crylus avellana L.),” Journal of Agricultural and Food Chemistry, Vol. 60, No. 5, 2012, pp. 1218-1223. doi:10.1021/jf204893x
[32] C. Somporn, A. Kamtuo, P. Theerakulpisut and S. Siriamornpun, “Effects of Roasting Degree on Radical Scavenging Activity, Phenolics and Volatile Compound of Arabica Coffee Beans (Coffea arabica L. cv. Catimor), International Journal of Food Science and Technology, Vol. 46, No. 11, 2011, pp. 2287-2296. doi:10.1111/j.1365-2621.2011.02748.x
[33] M. Murakami, T. Yamaguchi, H. Takamura and T. Matoba, “Effects of Thermal Treatment on Radical-Scavenging Activity of Single and Mixed Polyphenolic Com pounds,” Journal of Food Science, Vol. 69, No. 1, 2004, pp. 7-10. doi:10.1111/j.1365-2621.2004.tb17848.x
[34] N. Buchner, A. Krumbein, S. Rhon and L. W. Kroh, “Effect of Thermal Processing on the Flavonols Rutin and Quercetin,” Rapid Communications in Mass Spectrometry, Vol. 20, No. 21, 2006, pp. 3229-3235. doi:10.1002/rcm.2720
[35] A. Hartmann, C. D. Patz, W. Andlauer, H. Dietrich and M. Ludwig, “Influence of Processing on Quality Parameters of Strawberries,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 20, 2008, pp. 9484-9489. doi:10.1021/jf801555q
[36] S. Wang, K. A. Meckling, M. F. Marcone, Y. Kakuda and R. Tsao, “Synergistic, Additive, and Antagonistic Effects of Food Mixtures on Total Antioxidant Capacities,” Journal of Agricultural and Food Chemistry, Vol. 59, No. 3, 2011, pp. 960-968. doi:10.1021/jf1040977

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.