The Heat Treatment Effect on the Oxidation Rate of the Ge-Doped Si(100)


In this paper, the Si(100) substrate was implanted by Ge ions at different doses to study the effect of the preliminary heat treatment on the wet oxidized layer of the Si using Rutherford Backscattering Spectroscopy and Atomic Force Microscopy. We found that the change of the silicon oxide thickness and its morphology under the influence of the Ge dopant is mostly dependent on the damaged surface layer of the Si substrate after ion implantation. By choosing different doses of the implantation and subsequent annealing process, we tried to get different level of the induced damage, enabled us to investigate the role of the pre-heating and subsequent recrystalization of the damaged substrate on the silicon oxidation process under the effect of the implanted Ge ions. By the determination of the effect of these parameters, we can better identify the optimal conditions of getting the oxide layer with proper thickness and morphology.

Share and Cite:

B. Shakarab, A. Baghizadeh and D. Gol, "The Heat Treatment Effect on the Oxidation Rate of the Ge-Doped Si(100)," Open Journal of Applied Sciences, Vol. 3 No. 1, 2013, pp. 107-111. doi: 10.4236/ojapps.2013.31015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. E. Deala and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” Journal of Applied Physics, Vol. 36, No 12, 1965, pp. 3770-3778. doi:10.1063/1.1713945
[2] C. P. Ho and J. D. Plummer, “Si?/?SiO2 Interface Oxidation Kinetics: A Physical Model for the Influence of High Substrate Doping Levels I. Theory,” Journal of Electro chemical Society, Vol. 126, No. 9, 1979, pp. 1516-1522. doi:10.1149/1.2129320
[3] A. Terasi, S. Scalese, M. Re, E. Rimini and F. Lacona, “Thermal Oxidation of Si(100) Single Crystal Implanted with Ge Ions,” Journal of Applied Physics, Vol. 91, No. 10, 2002, pp. 6754-6761. doi:10.1063/1.1471942
[4] K. Hossain, L. KSavage and O. W. Holland, “Rate Enhancement during Thermal Oxidation of Ge+-Implanted Si,” Nuclear Instrument and Methods in Physics Research B, Vol. 241, No. 1-4, 2005, pp. 553-558. doi:10.1016/j.nimb.2005.07.103
[5] K. Hossain, O. W. Holland, F. U. Naab, R. Poudel and J. L. Duggan, “Dose-Dependent Thermal Oxidation of Ge+ Implanted Silicon,” Nuclear Instrument and Methods in Physics Research B, Vol. 261, No. 1-2, 2007, pp. 620-623. doi:10.1016/j.nimb.2007.04.240
[6] S. N. Dedyulin and L. V. Goncharova, “Thermal Oxidation of Ge-Implanted Si: Role of Defects,” Nuclear Instruments and Methods in Physics Research B, Vol. 272, 2012, pp. 334-337. doi:10.1016/j.nimb.2011.01.095
[7] A. Baghizadeh, D. Agha-Aligol, D. Fathy, M. Lamehi Rachti and M. Moradi, “Formation of As Enriched Layer by Steam Oxidation of As+-Implanted Si,” Applied Sur face Science, Vol. 255, No. 11, 2009, pp. 5857-5860. doi:10.1016/j.apsusc.2009.01.021
[8] J. F. Ziegler, M. D. Ziegler and J. P. Biersack, “SRIM— The Stopping and Range of Ions in Matter (2010),” Nu clear Instruments and Methods in Physics Research Section B, Vol. 268, No. 11-12, 2010, pp. 1818-1823. doi:10.1016/j.nimb.2010.02.091
[9] C. Cohen and D. Dauvergne, “High Energy Ion Channeling: Principles and Typical Applications,” Nuclear Instrument and Methods in Physics Research B, Vol. 225, No. 1-2, 2004, pp. 40-71. doi:10.1016/j.nimb.2004.03.017
[10] F. Sánchez-Almazán, E. Napolitani, A. Carnera, A. V. Drigo, M. Berti, J. Stangl, Z. Zhong, G. Bauer, G. Isella and H. von K?nel, “Ge Quantification of High Ge Content Relaxed Buffer Layers by RBS and SIMS,” Nuclear Instrument and Methods in Physics Research B, Vol. 266, 2004, pp. 301-308. doi:10.1016/S0168-583X(04)00833-X
[11] M. Mayer, “SIMNRA, a Simulation Program for the Analysis of NRA, RBS and ERDA,” American Institute of Physics Conference Proceedings, Vol. 475, 1999, pp. 541-544.
[12] S. M. Sze, “VLSI Technology,” 2nd Edition, Mc Graw Hill Book, New York, 1983.
[13] H. G. Chew, W. K. Choi, Y. L. Foo, W. K. Chim, E. A. Fitzgerald, F. Zheng, S. K. Samanta, Z. J. Voon and K. C. Seow, “TEM Study on the Evolution of Ge Nanocrystals in Si Oxide Matrix as a Function of Ge Concentration and the Si Reduction Process,” Advanced Materials for Micro and Nano-Systems (AMMNS), 2006.
[14] SPIP6.0.3.
[15] A. Terrasi, E. Rimini, V. Raineri, F. Iacona, F. La Via, S. Colonna and S. Mobilio, “Precipitation of As in Thermally Oxidized Ion-Implanted Si Crystals,” Applied Physics Letters, Vol. 73, No. 18, 1998, pp. 2633-2635. doi:10.1063/1.122536

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.