Characterization of Nuclear and Chloroplast Microsatellite Markers for Falcaria vulgaris (Apiaceae)


Falcaria vulgaris (sickleweed) is native to Eurasia and a potential invasive plant of the United States. No molecular markers have been developed so far for sickleweed. Characterization of molecular markers for this plant would allow investigation into its population structure and biogeography thereby yielding insights into risk analysis and effective management practices of the plant. In order to characterize the molecular markers, DNA samples were collected from eight populations in Iowa, Nebraska and South Dakota. Nuclear microsatellite markers developed for other Apiaceae taxa were screened and tested for intergeneric transferability to sickleweed. The chloroplast trnL intron and trnL-F intergenic spacer regions were sequenced and the sequences were used to design primers to amplify the microsatellites present within each region. We characterized eight polymorphic microsatellite markers for sickleweed that included six nuclear and two chloroplast markers. Our result showed intergeneric transferability of six nuclear microsatellite markers from Daucus carota to F. vulgaris. The markers we characterized are useful for population genetic study of F. vulgaris.

Share and Cite:

S. Piya and M. Nepal, "Characterization of Nuclear and Chloroplast Microsatellite Markers for Falcaria vulgaris (Apiaceae)," American Journal of Plant Sciences, Vol. 4 No. 3, 2013, pp. 590-595. doi: 10.4236/ajps.2013.43077.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Y. Larina, “Falcaria vulgaris Bernh. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries,” 2009.
[2] E. M. Gress, “Falcaria rivini, a Plant New to the United States,” Rhodora, Vol. 25, 1923, pp. 13-14.
[3] S. Piya, M. P. Nepal, A. Neupane, G. E. Larson and J. L. Butler, “Inferring Introduction History and Spread of Falcaria vulgaris Bernh. (Apiaceae) in the United States Based on Herbarium Records,” Proceedings of the South Dakota Academy of Sciences, Vol. 91, 2013, pp. 113-129.
[4] B. L. Korman, “Biology and Ecology of Sickleweed (Falcaria vulgaris) in the Fort Pierre National Grassland of South Dakota,” M.Sc. Thesis, South Dakota State University, Brookings, 2011.
[5] Nebraska Invasive Species Council, “Invasive Plants of Nebraska,” 2011.
[6] A. K. Sakai, F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, et al., “The Population Biology of Invasive Species,” Annual Review of Ecology and Systematics, Vol. 32, 2001, pp. 305-332. doi:10.1146/annurev.ecolsys.32.081501.114037
[7] P. Sunnucks, “Efficient Genetic Markers for Population Biology,” Trends in Ecology and Evolution, Vol. 15, No. 5, 2000, pp. 199-203. doi:10.1016/S0169-5347(00)01825-5
[8] K. A. Selkoe and R. J. Toonen, “Microsatellites for Ecologists: A Practical Guide to Using and Evaluating Microsatellite Markers,” Ecology Letters, Vol. 9, No. 5, 2006, pp. 615-629. doi:10.1111/j.1461-0248.2006.00889.x
[9] J. Squirrell, P. M. Hollingsworth, M. Woodhead, J. Russell, A. J. Lowe and M. Gibby, “How Much Effort Is Required to Isolate Nuclear Microsatellites from Plants?” Molecular Ecology, Vol. 12, No. 6, 2003, pp. 1339-1348. doi:10.1046/j.1365-294X.2003.01825.x
[10] T. Barbara, C. Palma-Silva, G. M. Paggi, F. Bered, M. F. Fay and C. Lexer, “Cross-Species Transfer of Nuclear Microsatellite Markers: Potential and Limitations,” Molecular Ecology, Vol. 16, No. 18, 2007, pp. 3759-3767. doi:10.1111/j.1365-294X.2007.03439.x
[11] J. Provan, W. Powell and P. M. Hollingsworth, “Chloroplast Microsatellites: New Tools for Studies in Plant Ecology and Evolution,” Trends in Ecology and Evolution, Vol. 16, No. 3, 2001, pp. 142-147. doi:10.1016/S0169-5347(00)02097-8
[12] M. A. F. Noor and J. L. Feder, “Speciation Genetics: Evolving Approaches,” Nature Reviews Genetics, Vol. 7, No. 11, 2006, pp. 851-861. doi:10.1038/nrg1968
[13] P. F. Cavagnaro, S. M. Chung, S. Manin, M. Yildiz, A. Ali, M. S. Alessandro, et al., “Microsatellite Isolation and Marker Development in Carrot—Genomic Distribution, Linkage Mapping, Genetic Diversity Analysis and Marker Transferability Across Apiaceae,” BMC Genomics, Vol. 12, 2011, p. 386. doi:10.1186/1471-2164-12-386
[14] M. Iorizzo, D. A. Senalik, D. Gizebelus, M. Bowman, P. F. Cavagnaro, M. Mativienko, et al., “De-Novo Assembly and Characterization of the Carrot Transcriptome Reveals Novel Genes, New Markers, and Genetic Diversity,” BMC Genomics, Vol. 12, 2011, p. 389. doi:10.1186/1471-2164-12-389
[15] P. Henry, J. Provan, J. Goudet, A. Guisan, S. Jahodova and G. Besnard, “A Set of Primers for Plastid Indels and Nuclear Microsatellites in the Invasive Plant Heracleum mantegazzianum (Apiaceae) and Their Transferability to Heracleum sphondylium,” Molecular Ecology Resources, Vol. 8, No. 1, 2008, pp. 161-163. doi:10.1111/j.1471-8286.2007.01911.x
[16] C. Van Oosterhout, W. F. Hutchinson, D. P. M. Wills and P. Shipley, “Micro-Checker: Software for Identifying and Correcting Genotyping Errors in Microsatellite Data,” Molecular Ecology Notes, Vol. 4, No. 3, 2004, pp. 535-538. doi:10.1111/j.1471-8286.2004.00684.x
[17] L. Excoffier, L. G. Laval and S. Schneider, “Arlequin ver. 3.0: An Integrated Software Package for Population Genetics Data Analysis,” Evolutionary Bioinformatics, Vol. 1, 2005, pp. 47-50.
[18] S. D. E. Park, “Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection,” Ph.D Thesis, University of Dublin, Dublin, 2001.
[19] R. Peakall and P. E. Smouse, “GenAlEx 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research,” Molecular Ecology Notes, Vol. 6, No. 1, 2006, pp. 288-295. doi:10.1111/j.1471-8286.2005.01155.x
[20] R. K. Varshney, A. Garner and M. E. Sorrells, “Genic Microsatellite Markers in Plants; Features and Applications,” Trends in Biotechnology, Vol. 23, No. 1, 2005, pp. 48-55. doi:10.1016/j.tibtech.2004.11.005
[21] J. A. Coyer, G. Hoarau, G. A. Pearson, E. A. Serrao, W. T. Stam and J. L. Olsen, “Convergent Adaptation to a Marginal Habitat by Homoploid Hybrids and Polyploid Ecads in the Seaweed Genus Fucus,” Biology Letters, Vol. 2, No. 3, 2006, pp. 405-408. doi:10.1098/rsbl.2006.0489
[22] P. Taberlet, L. Gielly, G. Pautou and J. Bouvet, “Universal Primers for Amplification of Three Non-Coding Regions of Chloroplast DNA,” Plant Molecular Biology, Vol. 17, No. 5, 1991, pp. 1105-1110. doi:10.1007/BF00037152
[23] A. Estoup and T. Guillemaud, “Reconstructing Routes of Invasion Using Genetic Data: Why, How and So What?” Molecular Ecology, Vol. 19, No. 19, 2010, pp. 4113-4130. doi:10.1111/j.1365-294X.2010.04773.x
[24] P. C. H. Pashley, J. R. Ellis, D. E. McCauley and J. M. Burke, “EST Databases as a Source for Molecular Markers: Lessons from Helianthus,” Journal of Heredity, Vol. 97, No. 4, 2006, pp. 381-388. doi:10.1093/jhered/esl013
[25] S. B. Savadi, B. Fakrudin, H. L. Nadaf and M. V. C. Gowda, “Transferability of Sorghum Genic Microsatellite Markers to Peanut,” American Journal of Plant Sciences, Vol. 3, No. 9, 2012, pp. 1169-1180. doi:10.4236/ajps.2012.39142

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.