Fluorescent Chemosensing Properties of New Isoindoline Based-Receptors towards F- and Cu2+ Ions


Two simple colorimetric and fluorescent anion chemosensors based on amide moieties, 4-nitro-N-[(1,3-dioxoisoindolin-2yl)benzamide (1), 3,5-dinitro-N-[(1,3-dioxoisoindolin-2yl)benzamide (2) have been synthesized and characterized. Comparing with other anions studied, the UV-visible absorption spectrum in DMSO shows significant response toward F- ion with high selectivity, and meanwhile color change is observed from colorless to pink and violet for 1 and 2 respectively in the presence of tetrabutylammonium fluoride (TBAF) (5 × 10-3 M). Moreover, F--induced color changes remain the same even in the large excess of Cl- , Br- and I-. In addition, the 1H NMR spectrum titration in DMSO-d6 shows deprotonation of the receptors 1 and 2 in the presence of basic F- ion. In particular, addition of F- to the receptors 1 and 2 resulted in an enhancement in fluorescence intensity at 770 nm. Both receptors 1 and 2 exhibit a fluorescent emission enhancement when addition of Zn2+, Ni2+, Co2+, Cu2+ and Mn2+ metal ions. The fluorescent enhancement values for the receptor 1 are 2.29 (Cu2+), 1.85 (Ni2+), 1.37 (Co2+), 1.27 (Mn2+), 1.25 (Zn2+) and for 2, 2.57 (Cu2+), 1.66 (Ni2+), 1.36 (Co2+), 1.15 (Mn2+), 1.09 (Zn2+). The selectivity of Cu2+ is higher for 1 and 2 than other metal ions such as Zn2+, Ni2+, Co2+ and Mn2+.

Share and Cite:

S. Devaraj and M. Kandaswamy, "Fluorescent Chemosensing Properties of New Isoindoline Based-Receptors towards F- and Cu2+ Ions," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 32-39. doi: 10.4236/opj.2013.31006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. J. Lavigne and E. V. Anslyn, “Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages,” Angewandte Chemie International Edition, Vol. 38, No. 24, 1999, pp. 3666-3669. doi:10.1002/(SICI)1521-3773(19991216)38:24<3666::AID-ANIE3666>3.0.CO;2-E
[2] K. Niikura, A. P. Bission and E. V. Anslyn, “Optical sensing of Inorganic Anions Employing a Synthetic Receptor and Ionic Colorimetric Dyes,” Journal of the Chemical Society, Perkin Transactions, Vol. 2, No. 6, 1999, pp. 1111-1114. doi:10.1039/a901180c
[3] F. Sancenon, R. Martinez-Manez, M. A. Miranda, M. J. Segui and J. Soto, “Towards the Development of Colorimetric Probes to Discriminate between Isomeric Dicarboxylates,” Angewandte Chemie International Edition, Vol. 42, No. 6, 2003, pp. 647-650. doi:10.1002/anie.200390178
[4] T. Gunnlaugsson, M. Nieuwenhuyzen, L. Richard and V. Thoss, “A Novel Optically Based Chemosensor for the Detection of Blood Na+,” Tetrahedron Letters, Vol. 42, No. 28, 2001, pp. 4725-4728. doi:10.1016/S0040-4039(01)00823-1
[5] T. Gunnlaugsson and J. P. Leonard, “Synthesis and Evaluation of Colometric Chemosensors for Monitoring Sodium and Potassium Ions in the Intracellular Concentration Range,” Journal of the Chemical Society, Perkin Transactions, Vol. 2, No. 12, 2002, pp. 1980-1985. doi:10.1039/b207551m
[6] L. Zhu and E. V. Anslyn, “Facile Quantification of Enantiomeric Excess and Concentration with Indicator-Dis placement Assays:? An Example in the Analyses of α Hydroxyacids,” Journal of the American Chemical Society, Vol. 126, No. 12, 2004, pp. 3676-3677. doi:10.1021/ja031839s
[7] M. H. Keefe, K. D. Benksein and J. T. Hupp, “Luminescent Sensor Molecules Based on Coordinated Metals: A Review of Recent Developments,” Coordination Chemistry Reviews, Vol. 205, No. 1, 2002, pp. 201-228. doi:10.1016/S0010-8545(00)00240-X
[8] S. S. Sun, A. J. Lees and P. Y. Zavalij, “Highly Sensitive Luminescent Metal-Complex Receptors for Anions through Charge-Assisted Amide Hydrogen Bonding,” Inorganic Chemistry, Vol. 42, No. 11, 2003, pp. 3445-3453. doi:10.1021/ic0206589
[9] J. K. Day, C. Bresner, N. D. Coombs, I. A. Fallis, L. L. Ooi and S. Aldridge, “Colorimetric Fluoride Ion Sensing by Polyborylated Ferrocenes: Structural Influences on Thermodynamics and Kinetics,” Inorganic Chemistry, Vol. 47, No. 3, 2008, pp. 793-804. doi:10.1021/ic701494p
[10] H. J. Kim, J. H. Lee, T. H. Kim, W. S. Lyoo, D. W. Kim, C. Lee and T. S. Lee, “Synthesis of Chromo and Fluorogenic Poly (Ortho-Diaminophenylene) Chemosensors for Fluoride Anion,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 45, No. 8, 2007, pp. 1549-1556. doi:10.1002/pola.21923
[11] K. L. Kirk, “Biochemistry of the Halogens and Inorganic Halides,” Plenum Press, New York, 1991. doi:10.1007/978-1-4684-5817-6
[12] M. Kleerekoper, “The Role of Fluoride in the Prevention of Osteoporosis,” Endocrinology and Metabolism Clinics of North America, Vol. 27, No. 2, 1998, pp. 441-452. doi:10.1016/S0889-8529(05)70015-3
[13] K. J. Wallace, R. I. Fagmemi, F. J. Folmer Anderson, J. Morey, V. M. Lynth and E. V. Anslyn, “Detection of Chemical Warfare Simulants by Phosphorylation of a Coumarin Oximate,” Chemical Communications, No. 37, 2006, pp. 3886-3888. doi:10.1039/b609861d
[14] T. J. Dale and J. Rebek, “Fluorescent Sensors for Organophosphorus Nerve Agent Mimics,” Journal of the American Chemical Society, Vol. 128, No. 14, 2006, pp. 4500-4501. doi:10.1021/ja057449i
[15] Z. Lin, S. Ou, C. Duan, B. Zhang and Z. Bai, “Naked-Eye Detection of Fluoride Ion in Water: A Remarkably Selective Easy-to-Prepare Test Paper,” Chemical Communi cations, No. 6, 2006, pp. 624-626. doi:10.1039/b514337c
[16] H. Hu and C. Chen, “A New Fluorescent Chemosensor for Anion Based on an Artificial Cyclic Tetrapeptide,” Tetrahedron Letters, Vol. 47, No. 2, 2006, pp. 175-179. doi:10.1016/j.tetlet.2005.10.162
[17] E. J. Jun, M. K. Swamy, H. Bang, S. J. Kim and J. Yoon, “Anthracene Derivatives Bearing Thiourea Group as Fluoride Selective Fluorescent and Colorimetric Chemo sensors,” Tetrahedron Letters, Vol. 47, No. 18, 2006, pp. 3103-3106. doi:10.1016/j.tetlet.2006.02.147
[18] J. J. R. Frausto da Silva and R. J. P. Williams, “The Biological Chemistry of Elements: The Inorganic Chemistry of Life,” Clarendon Press, Oxford, 1993.
[19] X. Qi, E. J. Jun, L. Xu, S. J. Kim, J. S. J. Hong, Y. J. Yoon and J. Yoon, “New Bodipy Derivatives as OFF-ON Fluorescent Chemosensor and Fluorescent Chemodosimeter for Cu2+:? Cooperative Selectivity Enhancement toward Cu2+,” The Journal of Organic Chemistry, Vol. 71, No. 7, 2006, pp. 2881-2884. doi:10.1021/jo052542a
[20] H. Yang, Z. G. Zhou, E. X. Shi, F. Y. Li, Y. K. Du, T. Yi, and C. H. Huang, “Highly Selective Ratiometric Fluorescent Sensor for Cu(II) with Two Urea Groups,” Tetrahedron Letters, Vol. 47, No. 17, 2006, pp. 2911-2914. doi:10.1016/j.tetlet.2006.02.126
[21] S. Kaur and S. Kumar, “Photoactive Chemosensors 3: A Unique Case of Fluorescence Enhancement with Cu(II),” Chemical Communications, No. 23, 2002, pp. 2840-2841. doi:10.1039/b209053h
[22] S. Banthia and A. Samantha, “Photophysical and Transition-Metal Ion Signaling Behavior of a Three-Component System Comprising a Cryptand Moiety as the Receptor,” Journal of Physical Chemistry B, Vol. 106, No. 21, 2002, pp. 5572-5577. doi:10.1021/jp014546z
[23] B. Ramachandran and A. Samantha, “Modulation of Metal-Fluorophore Communication to Develop Structurally Simple Fluorescent Sensors for Transition Metal Ions,” Chemical Communications, No. 11, 1997, pp. 1037-1038. doi:10.1039/a701030c
[24] S. Devaraj, D. Saravanakumar and M. Kandaswamy, “Dual Responsive Chemosensors for Anion and Cation: Synthesis and Studies of Selective Chemosensor for F? and Cu(II) Ions,” Sensors and Actuators B: Chemical, Vol. 136, No. 1, 2009, pp. 13-19. doi:10.1016/j.snb.2008.11.018
[25] H. H. Hammud, A. Ghannoum and M. S. Masoud, “Spec tral Regression and Correlation Coefficients of Some Benzaldimines and Salicylaldimines in Different Sol vents,” Spectrochimica Acta Part A, Vol. 63, No. 2, 2006, pp. 255-265. doi:10.1016/j.saa.2005.04.020
[26] M. Bonizzoni, L. Fabbrizzi, A. Taglietti and F. Tiengo, “(Benzylideneamino)thioureas-Chromogenic Interactions with Anions and N-H Deprotonation,” European Journal of Organic Chemistry, Vol. 2006, No. 16, 2006, pp. 3567-3574. doi:10.1002/ejoc.200600388
[27] I. G. Shenderovich, P. M. Tolstoy, N. S. Golubev, S. N. Smirnov, G. S. Denisov and H. H. Limbach, “Low Temperature NMR Studies of the Structure and Dynamics of a Novel Series of Acid-Base Complexes of HF with Collidine Exhibiting Scalar Couplings across Hydrogen Bonds,” Journal of the Chemical Society, Vol. 125, No. 38, 2003, pp. 11710-11720. doi:10.1021/ja029183a
[28] X. Peng, Y. Wu, J. Fan, M. Tian and K. Han, “Colorimetric and Ratiometric Fluorescence Sensing of Fluoride:? Tuning Selectivity in Proton Transfer,” Journal of Organic Chemistry, Vol. 70, No. 25, 2005, pp. 10524-10531. doi:10.1021/jo051766q
[29] M. Boiocchi, L. D. Boca, D. E. Gomez, L. Fabbrizzi, M. Licchelli and M. Monzani, “Nature of Urea-Fluoride Interaction:? Incipient and Definitive Proton Transfer,” Journal of the Chemical Society, Vol. 126, No. 50, 2004, pp. 16507-16514. doi:10.1021/ja045936c
[30] J. Shao, H. Lin, X. F. Shang, H. M. Chen and H. K. Lin, “A Novel Neutral Receptor for Selective Recognition of ,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, Vol. 59, No. 3-4, 2007, pp. 371-375. doi:10.1007/s10847-007-9339-7
[31] T. Mizuna, W. H. Wei, L. R. Eller and J. L. Sessler, “Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites:? Efficient Fluoride Anion Receptors,” Journal of the Chemical Society, Vol. 124, No. 7, 2002, pp. 1134-1135. doi:10.1021/ja017298t
[32] S. F. Forgues, M. T. Le Bris, J. P. Gutte and B. Valeur, “Ion-Responsive Fluorescent Compounds. 1. Effect of Cation Binding on Photophysical Properties of Benzoxazinone Derivative Linked to Monoaza-15-crown-5,” Journal of Physical Chemistry, Vol. 92, No. 22, 1998, pp. 6233-6237. doi:10.1021/j100333a013
[33] M. T. EI-Haty, F. A. Adam, A. E. Mohammed and A. A. Gabr, “Electronic Spectra of Some Heterocyclic Schiff Bases Derived from 3-Amino-1,2,4-triazole,” Indian Chemical Society, Vol. 67, 1990, p. 743.
[34] T. Ghosh, B. G. Maiya and M. W. Wong, “Fluoride Ion Receptors Based on Dipyrrolyl Derivatives Bearing Electron-Withdrawing Groups:? Synthesis, Optical and Electrochemical Sensing, and Computational Studies,” Journal of Physical Chemistry A, Vol. 108, No. 51, 2004, pp. 11249-11259. doi:10.1021/jp0464223
[35] D. H. Lee, J. H. Im, J. H. Lee and J. I. Honga, “A New Fluorescent Fluoride Chemosensor Based on Conformational Restriction of a Biaryl Fluorophore,” Tetrahedron Letters, Vol. 43, No. 53, 2002, pp. 9637-9640. doi:10.1016/S0040-4039(02)02443-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.