Can CT Perfusion Guide Patient Selection for Treatment of Delayed Cerebral Ischemia?


Purpose: To evaluate qualitative and quantitative CT perfusion (CTP) for different treatment options of delayed cerebral ischemia (DCI) in aneurysmal SAH. Methods: Retrospective study of consecutive SAH patients enrolled in a prospective IRB-approved clinical trial. Qualitative analysis of CTP deficits were determined by two blinded neuroradiologists. Quantitative CTP was performed using standardized protocol with region-of-interest placement sampling the cortex. DCI was assessed by clinical and imaging criteria. Patients were classified into treatment groups: 1) hypertension-hemodilution-hypervolemia (HHH); 2) intra-arterial (IA) vasodilators and/or angioplasty; 3) no treatment. Mean quantitative CTP values were compared using ANOVA pairwise comparisons. Receiver operating characteristic (ROC) curves, standard error (SE) and optimal threshold values were calculated. Results: Ninety-six patients were classified into three treatment groups; 21% (19/96) HHH, 34% (33/96) IA-therapy and 46% (44/96) no treatment. DCI was diagnosed in 42% (40/96); of which 18% (7/40) received HHH, 80% (32/40) IA-therapy, and 2% (1/40) no treatment. CTP deficits were seen in 50% (48/96); occurring in 63% (12/19) HHH, 94% (31/33) IA-therapy, and 11% (5/44) no treatment. Presence of CTP deficits had 83% sensitivity, 89% specificity, 90% positive predictive and 81% negative predictive values for treatment. Mean quantitative CTP values revealed significant differences in CBF (p < 0.0001) and MTT (p = 0.0001) amongst the treatment groups. ROC analysis revealed CBF with the highest accuracy of 0.82 (SE 0.04) for comparing treatment groups. Threshold analysis calculated CBF of 30 mL/100 gm/min (89% specificity, 71% sensitivity) for determining treatment. Conclusion: These initial findings of significant differences in CTP deficits for different treatment groups suggest that CTP may have a potential role in guiding patient selection for treatment of DCI.

Share and Cite:

Sanelli, P., Gold, R., Anumula, N., Ferrone, A., Johnson, C., Comunale, J., Tsiouris, A., Riina, H., Mangat, H., Rosengart, A. and Segal, A. (2013) Can CT Perfusion Guide Patient Selection for Treatment of Delayed Cerebral Ischemia?. Advances in Computed Tomography, 2, 4-12. doi: 10.4236/act.2013.21002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. W. Dankbaar, N. K. de Rooij, B. K. Velthius, C. J. Frijns, G. J. Rinkel and I. C. van der Schaaf, “Diagnosing Delayed Cerebral Ischemia with Different CT Modalities in Patients with Subarachnoid Hemorrhage with Clinical Deterioration,” Stroke, Vol. 40, No. 11, 2009, pp. 3493-3498. doi:10.1161/STROKEAHA.109.559013
[2] A. Aralasmak, M. Akyuz, C. Ozkaynak, T. Sindel and R. Tuncer, “CT Angiography and Perfusion Imaging in Patients with Subarachnoid Hemorrhage: Correlation of Vasospasm to Perfusion Abnormality,” Neuroradiology, Vol. 51, No. 2, 2009, pp. 85-93. doi:10.1007/s00234-008-0466-7
[3] M. Wintermark, N. U. Ko, W. S. Smith, S. Liu, R. T. Higashida and W. P. Dillon, “Vasospasm after Subarachnoid Hemorrhage: Utility of Perfusion CT and CT Angiography on Diagnosis and Management,” AJNR American Journal of Neuroradiology, Vol. 27, No. 1, 2006, pp. 26-34.
[4] J. Sen, A. Belli, H. Albon, L. Morgan, A. Petzold and N. Kitchen, “Triple-H Therapy in the Management of Aneurysmal Subarachnoid Haemorrhage,” Lancet Neurology, Vol. 2, No. 10, 2003, pp. 614-621. doi:10.1016/S1474-4422(03)00531-3
[5] P. C. Sanelli, I. Ugorec, C. E. Johnson, J. Tan, A. Z. Segal, M. Fink, et al., “Using Quantitative CT Perfusion for Evaluation of Delayed Cerebral Ischemia Following Aneurysmal Subarachnoid Hemorrhage,” AJNR American Journal of Neuroradiology, Vol. 32, No. 11, 2011, pp. 2047-2053. doi:10.3174/ajnr.A2693
[6] M. D. I. Vergouwen, M. Vermeulen, J. van Gijn, G. J. Rinkel, E. F. Wijdicks, J. P. Muizelaar, et al., “Definition of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies: Proposal of a Multidisciplinary Research Group,” Stroke, Vol. 41, No. 10, 2010, pp. 2391-2395. doi:10.1161/STROKEAHA.110.589275
[7] M. B. Reichman, E. D. Greenberg, R. L. Gold and P. C. Sanelli, “Developing Patient-Centered Outcome Measures for Evaluating Vasospasm in Aneurysmal Subarachnoid Hemorrhage,” Academic Radiology, Vol. 16, No. 5, 2009, pp. 541-545. doi:10.1016/j.acra.2009.01.018
[8] J. A. Frontera, A. Fernandez, J. M. Schmidt, J. Claassen, K. E. Wartenberg, N. Badjatia, et al., “Defining Vasospasm after Subarachnoid Hemorrhage: What Is the Most Clinically Relevant Definition?” Stroke, Vol. 40, No. 6, 2009, pp. 1963-1968. doi:10.1161/STROKEAHA.108.544700
[9] M. Wintermark, P. Maeder, J. P. Thiran, P. Schnyder and R. Meuli, “Quantitative Assessment of Regional Blood Flows by Perfusion CT Studies at Low Injection Rates: A Critical Review of the Underlying Theoretical Models,” European Radiology, Vol. 11, No. 7, 2001, pp. 1220-1230. doi:10.1007/s003300000707
[10] P. C. Sanelli, M. H. Lev, J. D. Eastwood, R. G. Gonzalez and T. Y. Lee, “The Effect of Varying User-Selected Input Parameters on Quantitative Values in CT Perfusion Maps,” Academic Radiology, Vol. 11, No. 10, 2004, pp. 1085-1092. doi:10.1016/j.acra.2004.07.002
[11] M. Wintermark, B. C. Lau, J. Chien and S. Arora, “The Anterior Cerebral Artery Is an Appropriate Arterial Input Function for Perfusion-CT Processing in Patients with Acute Stroke,” Neuroradiology, Vol. 50, No. 3, 2008, pp. 227-236. doi:10.1007/s00234-007-0336-8
[12] B. D. Murphy, A. J. Fox, D. H. Lee, D. J. Sahlas, S. E. Black, M. J. Hogan, et al., “Identification of Penumbra and Infarct in Acute Ischemic Stroke Using Computed Tomography Perfusion-Derived Blood Flow and Blood Volume Measurements,” Stroke, Vol. 37, No. 7, 2006, pp. 1771-1777. doi:10.1161/01.STR.0000227243.96808.53
[13] S. Binaghi, M. L. Colleoni, P. Maeder, A. Uske, L. Regli, A. R. Dehdashti, et al., “CT Angiography and Perfusion CT in Cerebral Vasospasm after Subarachnoid Hemorrhage,” AJNR American Journal Neuroradiology, Vol. 28, No. 4, 2007, pp. 750-758.
[14] M. Wintermark, W. P. Dillon, W. S. Smith, B. C. Lau, S. Chaudhary, S. Liu, et al., “Visual Grading System for Vasospasm Based on Perfusion CT Imaging: Comparisons with Conventional Angiography and Quantitative Perfusion CT,” Cerebrovascular Disease, Vol. 26, No. 2, 2008, pp. 163-170. doi:10.1159/000139664
[15] J. W. Dankbaar, M. Rijsdijk, I. C. van der Schaaf, B. K. Velthuis, M. J. Wermer and G. J. Rinkel, “Relationship between Vasospasm, Cerebral Perfusion, and Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage,” Neuroradiology, Vol. 51, No. 12, 2009, pp. 813-819. doi:10.1007/s00234-009-0575-y
[16] J. W. Dankbaar, N. K. de Rooij, M. Rijsdijk, B. K. Velthuis, C. J. Frijns, G. J. Rinkel, et al., “Diagnostic Threshold Values of Cerebral Perfusion Measured with Computed Tomography for Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage,” Stroke, Vol. 41, No. 9, 2010, pp. 1927-1932. doi:10.1161/STROKEAHA.109.574392
[17] A. Turk, J. A. Magarik, I. Chaudry, R. D. Turner, J. Nicholas, C. A. Holmstedt, et al., “CT Perfusion-Guided Patient Selection for Endovascular Treatment of Acute Ischemic Stroke is Safe and Effective,” Journal of Neuro-interventional Surgery, Vol. 4, No. 4, 2012, pp. 261-265.
[18] A. S. Turk, J. A. Magarik, D. Frei, K. M. Fargen, I. Chaudry, C. A. Holmstedt, et al., “CT Perfusion-Guided Patient Selection for Endovascular Recanalization in Acute Ischemic Stroke: A Multicenter Study,” Journal of Neuro-interventional Surgery, 2012, (Epub ahead of print) in PubMed.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.