Insight to the Mode of Action of Allium sativum Leaf Agglutinin (ASAL) Expressing in T3 Rice Lines on Brown Planthopper


Brown planthopper, the sap sucking hemipteran pest, is one of the major contributors to the yield loss of rice through the world. To combat the situation researchers are interested identifying genes from plant origin having potentiality to develop hemipteran pest resistance. Interestingly, it was observed that rice plants expressing ASAL, a monocot mannose binding lectin, showed significant resistance to brown planthopper and green leafhopper. Additionally, antibiotic resistant marker gene free ASAL expressing rice lines were developed to overcome the biosafety issues. However, the basis behind the resistance against planthoppers is still not clearly understood. Ligand blot assay was performed with total BBMV protein from BPH and a ~56 kDa receptor protein was detected. LC MS/MS analysis revealed that the receptor protein is NADH quinone oxidoreductase (NQO), a key player in electron transport chain, insect defense response and male/female gametogenesis. Presumably interaction of ASAL with NQO may lead to toxicity and loss of fecundity among BPH feeding on ASAL expressing transgenic rice plants. These findings provide a stable scientific basis for considering these transgenic ASAL expressing rice plants as significant product for combating BPH attack associated yield loss of rice.

Share and Cite:

A. Bala, A. Roy, N. Behura, D. Hess and S. Das, "Insight to the Mode of Action of Allium sativum Leaf Agglutinin (ASAL) Expressing in T3 Rice Lines on Brown Planthopper," American Journal of Plant Sciences, Vol. 4 No. 2A, 2013, pp. 400-407. doi: 10.4236/ajps.2013.42A052.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. S. Khush, “Green Revolution: The Way Forward,” Nature Reviews Genetics, Vol. 2, No. 10, 2001, pp. 815822. doi:10.1038/35093585
[2] P. Brookes and G. B. Barfoot, “GM Rice, Will This Be the Way for Global Acceptance of GM Crop Technology,” ISAAA Briefs No. 28, International Service for the Aquisition of Agri-Biotech Application, Ithaca, 2003.
[3] “Threats of Insecticide Misuse in Rice Ecosystems— Exploring Options for Mitigation,” International Conference Announcement, Hanoi, 16 December 2011.
[4] X. Foissac, N. T. Loc, P. Choursistou, A. M. R. Gatehouse and J. A. Gatehouse, “Resistance to Green Leafhopper (Nephotettix virescens) and Brown Planthopper (Nilaparvata lugens) in Transgenic Rice Expressing Snowdrop Lectin (Galanthus nivalis agglutinin; GNA),” Journal of Insect Physiology, Vol. 46, No. 4, 2000, pp. 573583. doi:10.1016/S0022-1910(99)00143-2
[5] M. B. Cohen, S. N. Alam, E. B. Medina and C. C. Bernal, “Brown planthopper, Nilaparvata lugens, Resistance in Rice Cultivar IR64 Mechanism and Role in Successful N. Lugens Management in Central Luzon, The Philippines, ” Entomologia Experimentalis et Applicata, Vol. 85, No. 3, 1997, pp. 221-229. doi:10.1046/j.1570-7458.1997.00252.x
[6] K. D. Gallagher, P. E. Kenmore and K. Sogawa, “Judicial Use Insecticides Deter Planthopper Outbreaks and Extend the Life of Resistant Varieties in Southeast Asia Rice,” In: R. K. Denno and T. J. Perfect, Eds., Planthopper: Their Ecology and Management, Chapman and Hall, London, 1994, pp. 599-614.
[7] K. V. Rao, K. S. Rathore, T. K. Hodges, X. Fu, E. Stoger, S. Sudhakar, P. Williams, P. Choursistou, M. Bharathi, D. P. Bown, K. S. Powell, J. Spence, A. M. R. Gatehouse and J. A. Gatehouse, “Expression of Snowdrop Lectin (GNA) in Transgenic Plants Confers Resistance to Rice Brown Planthopper,” Plant Journal, Vol. 15, No. 4, 1998, pp. 469-477. doi:10.1046/j.1365-313X.1998.00226.x
[8] S. Ramesh, D. Nagadhara, V. D. Reddy and K. V. Rao, “Production of Transgenic Indica Rice Resistant to Yellow Stem Borer and Sap Sucking Insects, Using Superbinary Vectors of Agrobacterium tumafaciens,” Plant Science, Vol. 166, No. 4, 2004, pp. 1077-1085. doi:10.1016/j.plantsci.2003.12.028
[9] K. S. Powell, A. M. R. Gatehouse, V. A. Hilder and A. J. Gatehouse, “Antifeedant Effects of Plant Lectins and an Enzyme on the Adult Stage of the Rice Brown Planthopper, Nilaparvata lugens,” Entomologia Experimentalis et Applicata, Vol. 75, No. 1, 1995, pp. 51-59. doi:10.1111/j.1570-7458.1995.tb01909.x
[10] P. Majumder, S. Banerjee and S. Das, “Identification of Receptors Responsible for Binding of the Mannose Specific Lectin to the Gut Epithelial Membrane of the Target Insects,” Glycoconjugate Journal, Vol. 20, No. 9, 2004, pp. 525-530.
[11] I. Dutta, P. Saha, P. Majumder, A. Sarkar, D. Chakraborti, S. Banerjee and S. Das, “The Efficacy of a Novel Insecticidal Protein, Allium sativum leaf lectin (ASAL) against Homopteran Insect Monitored in Transgenic Tobacco,” Plant Biotechnology Journal, Vol. 3, No. 6, 2005, pp. 601611. doi:10.1111/j.1467-7652.2005.00151.x
[12] I. Dutta, P. Majumder, P. Saha, K. Ray and S. Das, “Constitutive and Phloem Specific Expression of Allium sativum leaf agglutinin (ASAL) to Engineer Aphid (Lipaphis erysimi) Resistance in Transgenic Indian Mustard (Brassica juncea),” Plant Science, Vol. 169, No. 6, 2005, pp. 996-1007. doi:10.1016/j.plantsci.2005.05.016
[13] P. Saha, P. Majumder, I. Dutta, T. Ray, S. C. Roy and S. Das, “Transgenic Rice Expressing Allium sativum Leaf Lectin with Enhanced Resistance against Sap-Sucking Insect Pests,” Planta, Vol. 223, No. 6, 2006, pp. 13291343. doi:10.1007/s00425-005-0182-z
[14] E. C. Dale and D. W. Ow, “Gene Transfer with Subsequent Removal of the Selection Gene from the Host Genome,” Proceedings of National Academy of Science USA, Vol. 88, No. 23, 1991, pp. 10558-10562. doi:10.1073/pnas.88.23.10558
[15] Y. Wang, B. Chen, Y. Hu, J. Li and Z. Lin, “Inducible Excision of Selectable Marker Gene from Transgenic Plants by the Cre/Lox Site-Specific Recombination System,” Transgenic Research, Vol. 14, No. 5, 2005, pp. 605614. doi:10.1007/s11248-005-0884-9
[16] J. Zuo, Q. W. Niu, S. G. Moller and N. H. Chua, “ChemicalRegulated, Site-Specific DNA Excision in Transgenic Plants,” Nature Biotechnology, Vol. 19, No. 2, 2001, pp. 157-161. doi:10.1038/84428
[17] S. Sengupta, D. Chakraborti, H. A. Mondal and S. Das, “Selectable Antibiotic Resistance Marker Gene Free Transgenic Rice Harbouring the Garlic Leaf Lectin Gene Ex Hibits Resistance to Sap Sucking Planthoppers,” Plant Cell Report, Vol. 29, No. 3, 2010, pp. 261-271. doi:10.1007/s00299-010-0819-7
[18] T. Murashige and F. Skoog, “A Revised Method for Rapid Growth and Bioassays with Tobacco Tissue Cultures,” Plant Physiology, Vol. 15, No. 43, 1962, pp. 473497. doi:10.1111/j.1399-3054.1962.tb08052.x
[19] M. A. Saghai-Maroof, K. M. Soliman, R. A. Jorgensen and R. W. Allard, “Ribosomal DNA Spacer-Length Polymorphisms in Barley: Mendelian Inheritance, Choursomosomal Location and Population Dynamics,” Proceedings of the National Academy of Sciences USA, Vol. 81, No. 24, 1984, pp. 8014-8018. doi:10.1073/pnas.81.24.8014
[20] M. M. Bradford, “Rapid and Sensitive Method for Quan Titation of Microgram Quantities of Protein Utilizing Principle of Protein Dye Binding,” Annual Review of Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3
[21] N. Banerjee, S. Sengupta, A. Roy, P. Ghosh, K. Das and S. Das, “Functional Alteration of a Dimeric Insecticidal Lectin to a Monomeric Antifungal Protein Correlated to Its Oligomeric Status,” PLoS One, Vol. 6, No. 4, 2011, Article ID: e18593. doi:10.1371/journal.pone.0018593
[22] S. Bandyopadhyay, A. Roy and S. Das, “Binding of Garlic (Allium sativum) Leaf Lectin to the Gut Receptors of Hemipteran Pests Is Correlated to Its Insecticidal Activity,” Plant Science, Vol. 161, No. 5, 2001, pp. 1025-1033. doi:10.1016/S0168-9452(01)00507-6
[23] A. Sarkar, D. Hess, H. A. Mondal, S. Banerjee, H. C. Sharma and S. Das, “Homodimeric Alkaline Phosphatase Located at Helicoverpa armigera Midgut, a Putative Receptor of Cry1Ac Contains #-GalNAc in Terminutesal Glycan Structure as Interactive Epitope,” Journal Proteome Research, Vol. 8, No. 4, 2009, pp. 1838-1848. doi:10.1021/pr8006528
[24] H. A. Mondal, D. Chakraborti, P. Majumder, P. Roy, A. Roy and S. Das, “Allergenicity Assessment of Allium sativum leaf agglutinin, a Potential Candidate Protein for Developing Sap Sucking Insect Resistant Food Crops,” PLoS One, Vol. 6, No. 11, 2011, Article ID: e27716. doi:10.1371/journal.pone.0027716
[25] I. J. Goldstein, R. C. Hughes, M. Monsigny, T. Osawa and N. Sharon, “What Should Be Called a Lectin?” Nature, Vol. 285, No. 5760, 1980, p. 66. doi:10.1038/285066b0
[26] Y. Shi, M. B. Wang, K. S. Powell, E. Van Damme, V. A. Hilder, A. M. R. Gatehouse, D. Boulter and J. A. Gatehouse, “Use of the Rice Sucrose Synthase-1 Promoter to Direct Phloem-Specific Expression of β-Glucuronidase and Snowdrop Lectin Genes in Transgenic Tobacco Plants,” Journal of Experimental Botany, Vol. 45, No. 5, 1994, pp. 623-631. doi:10.1093/jxb/45.5.623
[27] Z. Yang, F. Zhang, Q. He and G. He, “Ribosomal DNA Spacer-Length Polymorphisms in Barley: Mendelian Inheritance, Choursomosomal Location and Population Dynamics,” Archives of Insect Biochemistry and Physiology, Vol. 59, No. 2, 2005, pp. 59-66. doi:10.1002/arch.20055
[28] P. Lümmen. “Complex I Inhibitors as Insecticides and Acaricides,” Biochimica et Biophysica Acta, Vol. 1364, No. 2, 1998, pp. 287-296. doi:10.1016/S0005-2728(98)00034-6
[29] G. Ragoneá, R. Caizziá, R. Moschettiá, P. Barsanti, V. De Pintoá and C. Caggese, “The Drosophila Melanogaster Gene for the NADH: Ubiquinone Oxidoreductase Acyl Carrier Protein: Developmental Expression Analysis and Evidence for Alternatively Spliced Forms,” Molecuar and General Genetics, Vol. 261, No. 4-5, 1999, pp. 690-697. doi:10.1007/s004380050012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.