[1]
|
(2008) World Health Organisation.
http://www.who.int/mediacentre/factsheets/fs307/en/print.html
|
[2]
|
Sears, M.R., Barnes, P.J., Rodger, I.W. and Thomson, N.C. (1998) Epidemiology. Asthma: Basic mechanisms and clinical management. Academic Press, San Diego, 1-33.
|
[3]
|
Rubin, B.K. and Pohanka, V. (2012) Beyond the guide- lines: Fatal and near-fatal asthma. Paediatric Respiratory Reviews, 13, 106-111. doi:10.1016/j.prrv.2011.05.003
|
[4]
|
Bystrom, J. and Amin, K. (2011) Bishop-bailey D. Ana- lysing the eosinophil cationic protein—A clue to the function of the eosinophil granulocyte. Respiratory Research, 12, 10. doi:10.1186/1465-9921-12-10
|
[5]
|
Venge, P.E. (1998) Asthma: Basic mechanisms and clinical management. In: Barnes, P.J., Rodger, I.W. and Thomson, N.C., Eds., Academic Press, San Diego, 1-33.
|
[6]
|
Gleich, G.J., Adolphson, C.R. and Leiferman, K.M. (1993) The biology of the eosinophilic leukocyte. Annual Review of Medicine, 44, 85-101.
doi:10.1146/annurev.me.44.020193.000505
|
[7]
|
Spry, C.J.F. (1998) Eosinophils: A comprehensive review and guide to the scientific and medical literature. Oxford University Press, Ox-ford, 1998.
|
[8]
|
Denburg, J.A. (1998) The origins of basophils and eosinophils in allergic inflammation. Journal of Allergy and Clinical Immunology, 102, S74-S76.
doi:10.1016/S0091-6749(98)70034-X
|
[9]
|
Rosenberg, H.F., Phipps, S. and Foster, P.S. (2007) Eosinophil trafficking in allergy and asthma. Journal of Al- lergy and Clinical Immunology, 119, 1303-1310.
doi:10.1016/j.jaci.2007.03.048
|
[10]
|
Sanderson, C.J. and Urwin, D. (2000) Interleukin-5: A drug target for allergic diseases. Current Opinion in In- vestigational Drugs, 1, 435-441.
|
[11]
|
Greenfeder, S., Umland, S.P., Cuss, F.M., Chapman, R.W. and Egan, RW. (2001) Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respiratory Research, 2, 71-79. doi:10.1186/rr41
|
[12]
|
Tanaka, H., Komai, M., Nagao, K., Ishizaki, M., Kajiwara, D., Takatsu, K., Delespesse, G. and Nagai, H. (2004) Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. American Journal of Respira- tory Cell and Molecular Biology, 31, 62-68.
doi:10.1165/rcmb.2003-0305OC
|
[13]
|
Leckie, M.J., tenBrinke, A., Khan, J., Diamant, Z., O’Connor, B.J., Walls, C.M., et al. (2000) Effect of inter-leukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness and the late asthmatic re- sponse. Lancet, 356, 2144-2148.
doi:10.1016/S0140-6736(00)03496-6
|
[14]
|
O’Byrne, P.M., Inman, M.D. and Parameswaran, K. (2001) The trials and tri-bulations of IL-5, eosinophils, and allergic asthma. Journal of Allergy and Clinical Im- munology, 108, 503-508. doi:10.1067/mai.2001.119149
|
[15]
|
Lipworth, B.J. (2001) Eo-sinophils and airway hyper- responsiveness. Lancet, 357, 1446.
doi:10.1016/S0140-6736(00)04597-9
|
[16]
|
Flood-Page, P.T., Menzies-Gow, A.N., Kay, A.B. and Robinson, D.S. (2003) Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. American Journal of Respiratory and Critical Care Medicine, 167, 199-204.
doi:10.1164/rccm.200208-789OC
|
[17]
|
Huib, A.M.K., Michael, E., Ronald, D., Pierluigi, P., Ek- kehard, B., Mark, V., Ralf, S., Dipl, M., Wolfgang, S., Petra, M.-Z. and Eric, D.B. (2012) Tiotropium in asthma poorly controlled with standard combina-tion therapy. The New England Journal of Medicine, 367, 1198-1120
|
[18]
|
Morokata, T., Ida, K. and Yamada, T. (2002) Characterization of YM-90709 as a novel antagonist which inhibits the binding of interleukin-5 to interleukin-5 receptor. In- ternational Immunopharmacology, 2, 1693-1702.
doi:10.1016/S1567-5769(02)00191-1
|
[19]
|
O’Byrne, P.M. (2011) Therapeutic strategies to reduce asthma exacerbations. Journal of Allergy and Clinical Immunology, 128, 257-263.
doi:10.1016/j.jaci.2011.03.035
|
[20]
|
Busse, W.W., Ring, J., Huss-Marp, J. and Kahn, J.E. (2010) A review of treatment with mepolizumab, an anti- IL-5 mAb, in hypereosinophilic syndromes and asthma. Journal of Allergy and Clinical Immu-nology, 125, 803- 813. doi:10.1016/j.jaci.2009.11.048
|
[21]
|
Wenzel, S.E., Schwartz, L.B., Langmack, E.L., Halliday, J.L., Trudeau, J.B., Gibbs, R.L. and Chu, H.W. (1999) Evidence that severe asthma can be di-vided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. American Journal of Respiratory and Critical Care Medicine, 160, 1001-1008.
|
[22]
|
Sexton, D.W., Blaylock, M.G. and Walsh, G. (2001) Human alveolar epithelial cells engulf apoptotic eosi-nophils by means of integrin- and phosphatidylserine receptor dependent mechanisms: A process upregulated by dexa- me-thasone. Journal of Allergy and Clinical Immunology, 108, 962-969.
|
[23]
|
Schleimer, R.P. and Bochner, B.S. (1994) The effects of glucocorticoids on human eosinophils. Journal of Allergy and Clinical Immunology, 94, 1202-1213.
doi:10.1016/0091-6749(94)90333-6
|
[24]
|
Adachi, T., Motojima, S., Hirata, A., Fukuda, T., Kihara, N. and Kosaku, H. (1996) Eosinophil apoptosis caused by theophylline, glucocorticoids, and macrolides after stimulation with IL-5. Journal of Allergy and Clinical Immunology, 98, S207-S215.
doi:10.1016/S0091-6749(96)70068-4
|
[25]
|
Sexton, D.W., Al-Rabia, M.W., Blaylock, M.G. and Walsh, G.M. (2004) Pha-gocytosis of apoptotic eosinophils but not neutrophils by bron-chial epithelial cells. Clinical & Experimental Allergy, 34, 1514-1524.
doi:10.1111/j.1365-2222.2004.02054.x
|
[26]
|
Schleimer, R.P. (1990) Effects of glucocorticoids on inflammatory cells relevant to their therapeutic applications in asthma. American Review of Respiratory Disease, 141, S59-S69.
|
[27]
|
Zhang, X., Moilanen, E. and Kankaanranta, H. (2000) Enhancement of human eosinophil apoptosis by fluticasone propionate, bude-sonide, and beclomethasone. European Journal of Pharmacology, 496, 325-332.
doi:10.1016/S0014-2999(00)00690-7
|
[28]
|
Meagher, L.C., Cousin, J.M., Seckl, J.R. and Haslett, C. (1996) Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. The Journal of Immunology, 156, 4422-4428.
|
[29]
|
Chauhan, S., Leach, C.H., Kunz, S., bloom, J.W. and Miesfeld, R.L. (2003) Glucocorticoid regulation of human eosinophil gene expression. Journal of Steroid Bio-chemistry and Molecular Biology, 84, 441-452.
doi:10.1016/S0960-0760(03)00065-7
|
[30]
|
Lilly, C.M., Naka-mura, H., Kesselman, H., Nagler- Anderson, C., Asano, K. and Garcia, Z.E.A. (1997) Expression of eotaxin by human lung epithelial cells-induction by cytokines and inhibition by glu-cocorticoids. Jour- nal of Clinical Investigation, 99, 1767-1773.
doi:10.1172/JCI119341
|
[31]
|
Ren, Y. and Savill, J. (1995) Proinflammatory cytokines potentiate thrombospondin-mediated phagocytosis of neutrophils undergoing apoptosis. The Journal of Immunology, 154, 2366-2374.
|
[32]
|
Saunders, M.W., Wheatley, A.H., George, S.J., Lai, T. and Birchall, M.A. (1999) Do corticosteroids induce apoptosis in nasal polyp inflamma-tory cells? In Vivo and in Vitro studies. Laryngoscope, 109, 785-790.
doi:10.1097/00005537-199905000-00019
|
[33]
|
Woolley, K.L., Gibson, P.G., Carty, K., Wilson, A.J., Twaddell, S.H. and Wool-ley, M.J. (1996) Eosinophil apoptosis and the resolution of airway inflammation in asthma. American Journal of Respiratory and Critical Care Medicine, 154, 237-243.
|
[34]
|
Liu, Y.Q., Cousin, J.M., Hughes, J., Van Damme, J., Seckl, J.R. and Has-lett, C. (1999) Glucocorticoids promote nonphlogistic phago-cytosis of apoptotic leukocytes. The Journal of Immunology, 162, 3639-3646.
|
[35]
|
Duval, E., Wyllie, A.H. and Morris, R.G. (1985) Macro-phage recognition of cells undergoing programmed cell death (apoptosis). Immunology, 56, 351-358.
|
[36]
|
Savill, J., Hogg, N., Ren, Y. and Haslett, C. (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. Journal of Clinical Investigation, 90, 1513-1522. doi:10.1172/JCI116019
|
[37]
|
Albert, M.L., Pearce, S.F.A., Francisco, L.M., Sauter, B., Roy, P. and Silverstein, R.L. (1998) Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36 and cross present antigens to cytotoxic T lym-phocytes. The Journal of Experimental Medicine, 188, 1359-1368.
doi:10.1084/jem.188.7.1359
|
[38]
|
Finnemann, S.C., Bonilha, V.L., Marmorstein, A.D. and Rodriguez-Boulan, E. (1997) Phagocytosis of rod outer segments by retinal pigmented epithelial cells requires αvβ5 integrin for binding but not interna-lization. Proceedings of the National Academy of Sciences of the United States of America, 94, 12932.
doi:10.1073/pnas.94.24.12932
|
[39]
|
Fadok, V.A., Savill, J.S., Haslett, C., Bratton, D.L., Do- herty, D.E. and Campbell, PA. (1992) Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. The Journal of Immunology, 149, 4029-4035.
|
[40]
|
Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992) Exposure of phosphatidyl-serine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. The Journal of Immunology, 148, 2207-2216.
|
[41]
|
Platt, N., Suzuli, H., Kurihara, Y., Kodoma, T. and Gordon, S. (1996) Role for the class A scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America, 93, 12456-12460.
doi:10.1073/pnas.93.22.12456
|
[42]
|
Sambrano, G.R. and Steinberg, D. (1995) Recognition of oxidatively damaged and apoptotic cells by an oxidized low-density lipoprotein receptor on mouse peritoneal macrophages: Role of membrane phospha-tidylserine. Proceedings of the National Academy of Sciences of the United States of America, 92, 1396-1400.
doi:10.1073/pnas.92.5.1396
|
[43]
|
Walsh, G., Sexton, D.W., Blaylock, M.G. and Convery, C.M. (1999) Resting and cyto-kine-stimulated human small airway epithelial cells recognize and ingest apoptotic eosinophils. Blood, 94, 2827-2835.
|
[44]
|
Walsh, G.M. (1999) Advances in the immunobiology of eosinophils and their role in disease. Critical Reviews in Clinical Laboratory Sciences, 36, 453-496.
doi:10.1080/10408369991239277
|
[45]
|
Fadok, V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, R.A.B. and Henson, P.M. (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature, 405, 85-90. doi:10.1038/35011084
|
[46]
|
Fadok, V., Bratton, D.L., Frasch, S.C., Warner, M. and Henson, P.M. (1998) The role of phos-phatidylserine in recognition of apoptotic cells by phagocytes. Cell Death & Differentiation, 5, 551-562.
doi:10.1038/sj.cdd.4400404
|
[47]
|
Fadok, V.A., de Cathelineau, A., Daleke, D.L., Henson, P.M. and Bratton, D.L. (2001) Loss of phospholipid asym- metry and surface exposure of phosphati-dylserine is required for phagocytosis of apoptotic cells by macro- phages and fibroblasts. The Journal of Biological Chemistry, 276, 1071-1077. doi:10.1074/jbc.M003649200
|
[48]
|
Alenzi, F.Q. (2009) Role of apoptosis in airway epithe- lium. Pakistan Journal of Physiology, 5, 1-10.
|
[49]
|
Alenzi, F.Q. (2008) Apoptosis and eosinophils. Regula- tion and clinical relevance. Saudi Medical Journal, 29, 643-656.
|
[50]
|
Alenzi, F.Q., Alenazi, B., Alanzy, F., Mubaraki, A., Salem, M., Al-Jabri, A., Lotfy, M., Bamaga, M., AlRabia, M. and Richard, K.H. (2010) The role of caspase activation and mitochondrial depolarisation in cultured human apoptotic eosinophils. Saudi Journal of Biological Sciences, 17, 29-36.
|