[1]
|
G. Salvendy, “Handbook of Human Factors and Ergonomics,” 2nd Edition, John Wiley & Sons, Inc., New York, 2005.
|
[2]
|
ISO 2631-1, “Mechanical Variation and Shock - Evaluation of Human Exposure to Wholebody Vibration. Part I: General Requirements,” Technology Report, International Or-ganization for Standardization, 1997.
|
[3]
|
X. Wu, S. Rakheja and P.-E. Boileau, “Analyses of Relationships between Biody-namic Response Functions,” Journal of Sound and Vibration, Vol. 226, No. 3, 1999, pp. 595-606.
|
[4]
|
R. R. Coermann, “The Mechanical Impedance of the Human Body in Sitting and Standing Position at Low Frequencies,” Human Factors, Oc-tober 1962, pp. 227- 253.
|
[5]
|
C. W. Suggs, C. F. Abrams and L. F. Stikeleather, “Application of a Damped Spring-Mass Human Vibration Simulator in Vibration Testing of Vehicle Seats,” Ergonomics, Vol. 12, No. 1, 1969, pp. 79-90.
|
[6]
|
V. K. Tewari and N. Prasad, “Three-DOF Modelling of Tractor Seat-Operator System,” Journal of Terramecha- nics, Vol. 36, No. 4, 1999, pp. 207-219.
|
[7]
|
P. E. Boileau and S. Rakheja, “Whole-Body Vertical Biodynamic Response Characteristics of the Seated Vehicle Driver: Measurement and Model Develop-ment,” International Journal of Industrial Ergonomics, Vol. 22, No. 6, 1998, pp. 449-472.
|
[8]
|
Z. Zong and K. Y. Lam, “Bio-dynamic Response of Shipboard Sitting Subject to Ship Shock Motion,” Journal of Biomechanics, Vol. 35, No. 1, 2002, pp. 35-43.
|
[9]
|
X. X. Liu, J. Shi and G. H. Li, “Biodynamic Re-sponse and Injury Estimation of Ship Personnel to Ship Shock Motion Induced by Underwater Explosion,” Proceeding of 69th Shock and Vibration Symposium, Vol. 18, St. Paul, 1998, pp. 1-18.
|
[10]
|
R. Muksian and C. D. Nash, “A Model for the Re-sponse of Seated Humans to Sinusoidal Displacements of the Seat,” Journal of Biomechanics, Vol. 7, No. 3, 1974, pp. 209-215.
|
[11]
|
M. K. Patil, M. S. Palanichamy and N. G. Dhanjoo, “Minimization of the Verticale Vibrations Sustained by a Tractor Operator, By Provision of a Standard-Type Tractor Seat Suspension,” ANNALS of Biomedical Engineering, Vol. 6, 1978, pp. 138-153.
|
[12]
|
C. C. Liang and C. F. Chiang, “A Study on Biodynamic Models of Seated Human Subjects Ex-posed to Vertical Vibration,” International Journal of Industrial Ergonomics, Vol. 36, No. 10, 2006, pp. 869-890.
|
[13]
|
A. E. Baumal, J. J. McPhee and P. H. Calamai, “Application of Ge-netic Algorithms to the Design Optimization of an Active Ve-hicle Suspension System,” Computer Methods in Applied Me-chanics and Engineering, Vol. 163, No. 1, 1998, pp. 87-94.
|
[14]
|
P.-E. Boileau, “A Study of Secondary Suspensions and Human Drivers Response to Whole-Body Vehicular Vibra-tion and Shock,” Ph.D. Thesis, Concordia University, Montreal, Quebec, 1995.
|
[15]
|
W. Wang, “A Study of Force-Motion and Vibration Transmission Properties of Seated Body under Ver-tical Vibration and Effects of Sitting Posture,” Ph.D. Thesis Concordia University, Montreal, Quebec, 2006.
|
[16]
|
Y. Huang, “Mechanism of Nonlinear Biodynamic Response of the Human Body Exposed to Whole-Body Vibration,” Ph.D. Thesis, Uni-versity of Southampton, 2008.
|
[17]
|
C. C. Liang and C. F. Chiang, “Modeling of a Seated Human Body Exposed to Ver-tical Vibrations in Various Automotive Postures,” Industrial Health, Vol. 46, No. 2, 2008, pp. 125-137.
|
[18]
|
X. Wu, “A Study of Driver-Seat Interaction and Enhancement of Vehicular Ride Vibration Environment,” PhD. Thesis Concordia Univer-sity, Montreal, Quebec, 1998.
|
[19]
|
Y. Wan and J. M. Schim-mels, “A Simple Model that Captures the Essential Dynamics of a Seated Human Exposed to Whole Body Vibration,” Advances in Bioengineering, ASME, Vol. 31, 1995, pp. 333-334.
|