Liquid-Liquid Extraction of V(IV) from Sulphate Medium by Cyanex 301 Dissolved in Kerosene


The equilibrium of extraction of V(IV) in the V(IV)- SO42- (H+, Na+)-Cyanex 301 (HA)-kerosene system has been studied. Significant extraction occurs above pH 1 within 10 min. CD (extraction ratio at constant pH(eq) and [HA](o,eq)) value is slightly decreased with increasing [V(IV)](ini). CD is found to be directly proportional to [H+]-n (n ≤ 2), [HA] 2 and (1+1.58 [SO42-]). The process is endothermic (DH = 16 kJ/mol). Apparent Kexvalues at 303 K are 10-1.419 and 10-0.94 in 0.10 and 1.50 mol/L SO42- medium, respectively. The loading capacity is calculated to be7.87 gV(IV) per100 g Cyanex 301. Kerosene appears as the best diluent. Stripping to the extents of 100%, 94% and 97.7% are possible in single stage by 1 mol/L H2SO4, HCl and HNO3, respectively. Separations of V(IV) from Cu(II) (at pH 0), Zn(II) (at pH 0.5) and Fe(III) (at pH 1.0) by Cyanex 301 are possible.

Share and Cite:

Biswas, R. and Karmakar, A. (2013) Liquid-Liquid Extraction of V(IV) from Sulphate Medium by Cyanex 301 Dissolved in Kerosene. International Journal of Nonferrous Metallurgy, 2, 21-29. doi: 10.4236/ijnm.2013.21003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Prakash, G. D. Tuli, S. K. Banu and R. D. Madan, “Advanced Inorganic Chemistry,” S. Chand and Company Ltd., New Delhi, 1990.
[2] R. K. Biswas, M. Wakihara and M. Taniguchi, “Recovery of Vanadium and Molybdenum from Heavy Oil Desulphurization Waste Catalyst,” Hydrometallurgy, Vol. 14, No. 2, 1985, pp. 219-230. doi:10.1016/0304-386X(85)90034-9
[3] C. O. Gomez-Bueno, D. R. Spink and G. L. Rempel, “Extraction of Vanadium from Athabasca Tar Sands Fly Ash,” Metallurgical and Materials Transactions B, Vol. 12, No. 2, 1981, pp. 341-352.
[4] T. Sekine and Y. Hasegawa, “Solvent Extraction Chemistry: Fundamentals and Applications,” Marcel Dekker, Inc., New York, 1977, pp. 564-567.
[5] F. Islam and R. K. Biswas, “The Solvent Extraction of Vanadium(IV) with HDEHP in Benzene and Kerosene: The Solvent Extraction of Vanadium(IV) from Sulphuric Acid Solution with Bis-(2-Ehylhexyl) Phosphoric Acid in Benzene and Kerosene,” Journal of Inorganic and Nuclear Chemistry, Vol. 42, 1980, pp. 415-420. doi:10.1016/0022-1902(80)80018-2
[6] F. Islam and R. K. Biswas, “Kinetics of Solvent Extraction of Metal Ions with HDEHP-II: Kinetics and Mechanism of Solvent Extraction of V(IV) from Acidic Aqueous Solutions with Bis-(2-Ethylhexyl)Phosphoric Acid in Benzene” Journal of Inorganic and Nuclear Chemistry, Vol. 42, No. 3, 1980, pp. 421-429. doi:10.1016/0022-1902(80)80019-4
[7] T. Sato, T. Nakamura and M. Kawamura, “The Extraction of Vanadium(IV) from Hydrochloric Acid Solutions by Di-(2-Ethylhexyl)-Phosphoric Acid,” Journal of Inorganic and Nuclear Chemistry, Vol. 40, No. 5, 1978, pp. 853-856. doi:10.1016/0022-1902(78)80164-X
[8] J. P. Brunette, F. Rastegar and M. J. F. Leroy, “Solvent Extraction of Vanadium(V) by Di-(2-Ethylhexyl)-Phosphoric Acid from Nitric Acid Solutions,” Journal of Inorganic and Nuclear Chemistry, Vol. 41, No. 5, 1979, pp. 735-737. doi:10.1016/0022-1902(79)80364-4
[9] M. A. Hughes and R. K. Biswas, “The Kinetics of Vanadium(IV) Extraction in the Acidic Sulphate-D2EHPAn-Heptane System Using the Rotating Diffusion Cell Technique,” Hydrometallurgy, Vol. 26, No. 3, 1991, pp. 281-297. doi:10.1016/0304-386X(91)90005-7
[10] R. S. Juang and R. H. Lo, “Stoichiometry of Vanadium(IV) Extraction from Sulfate Solutions with Di(2-Ethylhexyl) Phosphoric Acid Dissolved in Kerosene,” Journal of Chemical Engineering of Japan, Vol. 26, No. 2, 1993, pp. 219-222. doi:10.1252/jcej.26.219
[11] R. K. Biswas and M. G. K. Mondal, “Kinetics of VO2+ Extraction by D2EHPA,” Hydrometallurgy, Vol. 69, No. 1-3, 2003, pp. 117-133. doi:10.1016/S0304-386X(02)00208-6
[12] J. Saji and M. L. P. Reddy, “Solvent Extraction Separation of Vanadium(V) from Multivalent Metal Chloride Solution Using 2-Ethylhexyl Phosphonic Acid Mono-2-Ethylhexyl Ester,” Journal of Chemical Technology and Biotechnology, Vol. 77, No. 10, 2002, pp. 1149-1156. doi:10.1002/jctb.690
[13] J. Saji and M. L. P. Reddy, “Selective Extraction and Separation of Titanium(IV) from Multivalent Metal Chloride Solutions Using 2-Ethylhexyl Phosphonic Acid Mono 2-Ethylhexyl Ester,” Separation Science and Technology, Vol. 38, No. 2, 2003, pp. 427-441. doi:10.1081/SS-120016583
[14] J. Saji, J. K. Saji and M. L. P. Reddy, “Liquid-Liquid Extraction of Tetravalent Titanium from Acidic Chloride Solutions by Bis(2,4,4-Trimethylpentyl)Phosphinic Acid,” Solvent Extraction and Ion Exchange, Vol. 18, No. 5, 2000, pp. 877-894. doi:10.1080/07366290008934712
[15] M. Ulewicz and W. Walkowiak, “Selective Removal of Transition Metal Ions in Transport through Polymer Inclusion Memberances with Organophosphorus Acid,” Environment Protection Engineering, Vol. 31, No. 3-4, 2005, pp. 74-81.
[16] W. A. Rickelton, “Novel Uses for Thiophosphinic Acids in Solvent Extraction,” Journal of Metals, Vol. 44, No. 5, 1992, pp. 52-54.
[17] A. Saily and S. N. Tandon, “Liquid-Liquid Extraction Behavior of V(IV) Using Phosphinic Acids as Extractants,” Fresenius’ Journal of Analytical Chemistry, Vol. 360, No. 2, 1998, pp. 266-270. doi:10.1007/s002160050688
[18] P. Zhang, K. Inoue and H. Tsuyama, “Recovery of Molybdenum and Vanadium from Spent Hydrodesulfurization Catalysts by Means of Liquid-Liquid Extraction,” Kagaku KogakuRonbunshu, Vol. 21, No. 1, 1995, pp. 451-456. doi:10.1252/kakoronbunshu.21.451
[19] P. Zhang, K. Inoue, K. Yoshizuka and H. Tsuyama, “Solvent Extraction of Vanadium(IV) from Sulfuric Acid Solution by Bis(2,4,4-Trimethylpentyl)Phosphinic Acid in Exxsol D80,” Journal of Chemical Engineering of Japan, Vol. 29, No. 1, 1996, pp. 82-87. doi:10.1252/jcej.29.82
[20] R. K. Biswas and A. K. Karmakar, “Equilibrium of the Extraction of V(IV) in the V(IV)-SO42-(H+, Na+)-Cyanex 302-Kerosene System,” International Journal of Nonferrous Metallurgy, Vol. 1, 2012, pp. 23-31.
[21] K. C. Sole and J. B. Hiskey, “Solvent Extraction Characteristics of Thio Substituted Organophosphinic Acid Extractants,” Hydrometallurgy, Vol. 30, 1992, pp. 345-365. doi:10.1016/0304-386X(92)90093-F
[22] J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, “Vogel’s Textbook of Quantitative Inorganic Analysis including Elementary Instrumental Analysis,” 4th Edition, ELBS and Longman, London, 1979, pp. 752-753.
[23] M. R. Ali, R. K. Biswas, S. M. A. Salam, A. Akhter, A. K. Karmakar and M. H. Ullah, “Cyanex 302: An Extractant for Fe3+ from Chloride Medium,” Bangladesh Journal of Scientific and Industrial Research, Vol. 46, No. 4, 2011, pp. 407-414.
[24] R. K. Biswas and D. A. Begum, “Solvent Extraction of Fe(III) from Chloride Solution by D2EHPA in Kerosene,” Hydrometallurgy, Vol. 50, No. 2, 1998, pp. 153-168. doi:10.1016/S0304-386X(98)00048-6
[25] E. Paatero, T. Lantto and P. Ernola, “The Effect of Trioctylphosphine Oxide on Phase and Extraction Equilibria in Systems Containing Bis(2,4,4-Trimethylpentyl) Phosphinic Acid,” Solvent Extraction and Ion Exchange, Vol. 8, No. 3, 1990, pp. 371-388. doi:10.1080/07366299008918006
[26] E. C. Potterr, “Electrochemical Principles and Applications,” Cleaver House Press, London, 1961, p. 51.
[27] R. M. Smith and A. E. Martell, “Critical Stability Constants,” Inorganic Complexes, Vol. 4, Plenum Press, New York and London, 1976.
[28] N. E. El-Hefny, “Kinetics and Mechanism of Extraction of Cu(II) by Cyanex 302 from Nitrate Medium and Oxidative Stripping of Cu(I) using Lewis Cell,” Chemical Engineering and Processing, Vol. 49, No. 12, 2010, pp. 84-90. doi:10.1016/j.cep.2009.11.012
[29] K. C. Sole and J. B. Hiskey, “Solvent Extraction of Copper by Cyanex 272, Cyanex 302 and Cyanex 301,” Hydrometallurgy, Vol. 37, No. 2, 1995, pp. 129-147. doi:10.1016/0304-386X(94)00023-V
[30] A. Bhattacharyya, P. K. Mohapatra and V. K. Manchanda, “Seperation of Americium(III) and Europium(III) from Nitrate Medium Using a Binary Mixture of Cyanex 301 with N-Donor Ligands,” Solvent Extraction and Ion Exchange, Vol. 24, 2006, pp. 1-17. doi:10.1080/07366290500388459
[31] B. Menoya, M. P. Elizalde and A. Almela, “Determination of the Degradation Compounds Formed by the Oxidation of Thiophosphinic Acids and Phosphine Sulphides with Nitric Acid,” Analytical Sciences, Vol. 18, 2002, pp. 799-804. doi:10.2116/analsci.18.799
[32] K. C. Sole, J. B. Hiskey and T. L. Ferguson, “An Assessment of the Long Term Stabilities of Cyanex 302 and Cyanex 301 in Sulfuric and Nitric Acids,” Solvent Extraction and Ion Exchange, Vol. 11, 1993, pp. 783-796. doi:10.1080/07366299308918186

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.