A novel approach for detection of deception using Smoothed Pseudo Wigner-Ville Distribution (SPWVD)


For many years, the uncertainty of lie-detection systems has been one of the concerns of defense related agencies. Clearly the results of these systems must be generalized by a high value of accuracy to be acceptable by judicial systems. In this paper, a new method based on P300-based component has been proposed for lie-detection. In this regard, the test protocol is designed based on Odd-ball paradigm concealed information recognition. This test was done on 32 people and their brain signals were acquired. After preprocessing, the classic features are extracted from each single trial. After that, time-frequency (TF) transformation is applied on the sweeps and TF features are produced thereupon. Then, the best combinational feature vector is selected in order to improve classifier accuracy. Finally, Guilty and Innocent persons are classified by KNN and MLP. We found that combination of Time-Frequency and Classic features have better ability to achieve higher amount of accuracy. The obtained results show that the proposed method can detect deception by the accuracy of 89.73% which is better than other previously reported methods.

Share and Cite:

Ebrahimzadeh, E. , Alavi, S. , Bijar, A. and Pakkhesal, A. (2013) A novel approach for detection of deception using Smoothed Pseudo Wigner-Ville Distribution (SPWVD). Journal of Biomedical Science and Engineering, 6, 8-18. doi: 10.4236/jbise.2013.61002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Fang, F., Liu, Y. and Shen, Z. (2003) Lie detection with contingent negative variation, International Journal of Psychophysiology, 50, 247-255. doi:10.1016/S0167-8760(03)00170-3
[2] Farwel, L.A. and Donchin, E. (1991) The truth will out: Interrogative polygraphy (lie detection) with event-related potentials. Psychophysiology, 28, 531-547. doi:10.1111/j.1469-8986.1991.tb01990.x
[3] Rosenfeld, J.P., Ellwanger, J. and Sweet, J. (1995) Detecting simulated amnesia with event-related brain potentials, International Journal of Psychophysiology, 19, 1-11. doi:10.1016/0167-8760(94)00057-L
[4] Ganis, G., Kosslyn, S.M., Stose, S., Thompson, W.L. and Yurge-lun-Todd, D.A. (2003) Neural correlates of different types of deception: An fMRI investigation. Cerebral Cortex, 13, 830-836. doi:10.1093/cercor/13.8.830
[5] Kozel, F.A., Revell, L.J., Lorberbaum, J.P., Shastri, A., Elhai, J.D., Horner, M.D., Smith, A., Nahas, Z., Bohning, D.E. and George, M.S. (2004) A pilot study of functional magnetic resonance imaging brain correlates of deception in healthy young men. The Journal of Neuropsychiatry and Clinical Neurosciences, 16, 295-305. doi:10.1176/appi.neuropsych.16.3.295
[6] Kozel, F.A., Padgett, T.M. and George, M.S. (2004) A replication study of the neural correlates of deception. Behavioral Neuroscience, 118, 852-856. doi:10.1037/0735-7044.118.4.852
[7] Langleben, D.D., Loughead, J.W., Bilker, W.B., Ruparel, K., Childress, A.R., Busch, S.I. and Gur, R.C. (2005) Telling truth from lie in individual subjects with fast event-related fMRI. Human Brain Mapping, 26, 262-272. doi:10.1002/hbm.20191
[8] Lee, T.M.C., Liu, H.L., Tan, L.H., Chan, C.C.H., Mahankali, S., Feng, C.M., Hou, J., Fox, P.T. and Gao, J.H. (2002) Lie detection by functional magnetic resonance imaging. Human Brain Mapping, 151, 57-164.
[9] Nunez, J.M., Casey, B.J., Egner, T., Hare, T., Hirsch, J. (2005) Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage, 25, 267-277. doi:10.1016/j.neuroimage.2004.10.041
[10] Phan, K.L., Magalhaes, A., Ziemlewicz, T.J., Fitzgerald, D.A., Green, C. and Smith, W. (2005) Neural correlates of telling lies: A functional magnetic resonance imaging study at 4 Tesla. Academic Radiology, 12, 164-172.
[11] Rosenfeld, J.P. (2002) Event-related potentials in the detection of deception, malingering, and false memories, In: M. Kleiner (Ed.), Handbook of Polygraph Testing, Academic Press, New York, 265-286.
[12] Allen, J., Iacono, W.G. and Danielson, K.D. (1992) The identification of concealed memories using the event-related potential and implicit behavioral measures: A methodology for prediction in the face of individual differences. Psychophysiology, 29, 504-522. doi:10.1111/j.1469-8986.1992.tb02024.x
[13] Mohammadian, A., Torabi, Sh., Abootalebi, V. and Rezania, S. (2011) P300-Based Detection of Concealed Face Recog-nition. Proceedings of Iranian Conference on Electrical Engineering, Tehran, 17-19 May 2011.
[14] Stone, G.M. and Rothenheber, E. (1992) Advanced scientific detection of deception—ERP augmented polygraphy, Proceedings of IEEE International Carnahan Conference on Security Technology, Atlanta, 14-16 October 1992, 72-73.
[15] Gao, J., Yan, X., Sun, J. and Zheng, Ch. (2011) Denoised P300 and machine learning-based concealed information test method. Computer Methods and Programs in Bio-medicine, 104, 410-417. doi:10.1016/j.cmpb.2010.10.002
[16] Kubo, K. and Nit-tono, H. (2009) The role of intention to conceal in the P300 based concealed information test. Applied Psychophysiology and Biofeedback, 34, 227-235. doi:10.1007/s10484-009-9089-y
[17] Abootalebi, V., Moradi, M.H. and Khalilzadeh, M.A. (2010) A new approach for EEG feature extraction in P300-based lie detection. Computer Methods and Programs in Biomedicine, 94, 48-57. doi:10.1016/j.cmpb.2008.10.001
[18] Abootalebi, V., Moradi, M.H. and Khalilzadeh, M.A. (2006) A Comparison of Methods for ERP Assessment in a P300-based GKT. International Journal of Psychophysiology, 62, 308-320. doi:10.1016/j.ijpsycho.2006.05.009
[19] Rosenfeld, J.P., Soskins, M., Bosh, G. and Ryan, A. (2004) Simple, effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology, 41, 205-219. doi:10.1111/j.1469-8986.2004.00158.x
[20] Meijer, E., Smulders, F., Merckelbach, H. and Wolf, A.(2007) The P300 is sensitive to concealed face recognition. International Journal of Psychophysiology, 66, 231- 237. doi:10.1016/j.ijpsycho.2007.08.001
[21] Schinkel, S. Marwan, N. and Kurths, J. (2009) Brain signal analysis based on recurrences. Journal of Physiology, 103, 315-323.
[22] Shojair, S. and Moradi, M.H. (2008) An evolutionary artificial immune system for feature selection and parameters optimization of support vector machines for ERP assessment in a P300-based GKT. Proceeding of Biomedical Engineering Conference, Cairo, 18-20 December 2008, 1-4.
[23] Mehrnam, A.H., Nasrabadi, A.M., Mohammadian, A. and Torabi, Sh. (2011) Concealed face recognition analysis based on recurrence plots. Proceeding of Biomedical Engineering Conference (ICBME), Tehran, 14-16 December 2011, 1-4. doi:10.1109/ICBME.2011.6168556
[24] Kalatzis, I., Pi-liouras, N., Ventouras, E., Papageorgiou, C.C., Rabavilas, A.D. and Cavouras, D. (2004) Design and implementation of an SVM-based computer classification system for discriminating depressive patients from healthy controls using the P600 component of ERP signals. Computer Methods and Programs in Biomedicine, 75, 11-22. doi:10.1016/j.cmpb.2003.09.003
[25] Basar, E., Schur-mann, M., Demiralp, T., Basar-Eroglu, C. and Ademoglu, A. (2001) Eventrelated oscillations are “Real Brain Res-ponses”: Wavelet analysis and new strategies. Interna-tional Journal of Psychophysiology, 39, 91-127. doi:10.1016/S0167-8760(00)00135-5
[26] Basar, E., Basar-Eroglu, C., Karakas, S. and Schurmann, M. (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39, 241-248. doi:10.1016/S0167-8760(00)00145-8
[27] Basar, E., Basar-Eroglu, C., Karakas, S. and Schurmann, M. (1999) Are cognitive processes manifested in event- related Gamma, Alpha, Theta and Delta oscillation in the EEG. Neuroscience Letters, 259, 165-168. doi:10.1016/S0304-3940(98)00934-3
[28] Gevins, A.S. (1984) Analysis of the Electromagnetic Signals of the Human Brain: Milestones, Obstacles and Goals. IEEE Transactions on Biomedical Engineering, 31, 833-850. doi:10.1109/TBME.1984.325246
[29] Cohen, L. (1995) Time frequency analysis. Prentice-Hall, Inc., Englewood Cliffs.
[30] Kemal K?ym?ka, M., Güler, ?., Dizibüyük, A. and Ak?n, M. (2005) Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Computers in Biology and Medicine, 35, 603-616. doi:10.1016/j.compbiomed.2004.05.001
[31] Shou, G., Ding, L. and Dasari, D. (2012) Probing neural activations from continuous EEG in a real-world task: Time-frequency independent component analysis. Journal of Neuroscience Methods, 209, 22-34. doi:10.1016/j.jneumeth.2012.05.022
[32] Hyvarinen, A., Ramkumar, P., Parkkonen, L. and Hari, R. (2010) Inde-pendent component analysis of short-time Fourier trans-forms for spontaneous EEG/MEG analysis. Neuroimage, 49, 257-271. doi:10.1016/j.neuroimage.2009.08.028
[33] Quiroga, R.Q. (1998) Quantitative analysis of EEG signals: Time-frequency methods and chaos theory. Phd. Thesis, Medical University of Lübeck, Lübeck.
[34] Quiroga, R.Q., Sakowitz, O.W., Basar, E. and Schurmann, M. (2001) Wavelet transform in the analysis of frequency composition of evoked potentials. Brain Research Pro-tocols, 8, 16-24. doi:10.1016/S1385-299X(01)00077-0
[35] Demiralp, T., Istefanopulos, Y., Ademoglu, A., Yordanova, J. and Ko-lev, V. (1992) Analysis of functional component of P300 by wavelet transform. Proceedings of 20th Annual Inter-national Conference of IEEE in Medicine and Biology Society, Hong Kong, 29 October-1 November 1998, 1992-1995.
[36] Akay, M. and Mello, C. (1997) Time frequency and wavelets in biomedical signal processing. Proceedings of the 19th Annual International Conference of the IEEE, Chicago, 30 October-2 November 1997, 2688.
[37] Mallat, S. (1999) A wavelet tour of signal processing. 2nd Edition. Academic Press, San Di-ego.
[38] Yordanova, J., Kolev, V., Rosso, O.A., Schur-mann,M., Sakowitz, O.W., Ozgoren, M. and Basar, E. (2002) Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance. Journal of Neuroscience Methods, 117, 99-109. doi:10.1016/S0165-0270(02)00095-X
[39] Unser, M. and Aldroubi, A. (1996) A review of wavelets in bio-medical applications. Proceedings of the IEEE, 84, 626-638. doi:10.1109/5.488704
[40] Ta?luk, M.E., ?akmak, E.D. and Karaka?, S. (2005) Analysis of the time-varying energy of brain responses to an oddball paradigm using short-term smoothed Wigner-Ville distribution. Journal of Neuroscience Methods, 143, 197-208. doi:10.1016/j.jneumeth.2004.10.007
[41] Kortelainena, J., Koskinen, M., Mustola, S. and Sepp?nena, T. (2008) Time-frequency properties of electroencephalogram during induction of Anesthesia. Neuroscience Letters, 446, 70-74. doi:10.1016/j.neulet.2008.09.056
[42] Abdulla, W. and Wong, L. (2011) Neonatal EEG signal characteristics using time frequency analysis. Physica A: Statistical Mechanics and Its Applications, 390, 1096- 1110. doi:10.1016/j.physa.2010.11.013
[43] Vaz, F., Guedes de Oliveira, P. and José, C. (1987) A study on the best order for autoregressive EEG modeling. International Journal of Bio-Medical Computing, 20, 41- 50. doi:10.1016/0020-7101(87)90013-4
[44] Lawhern, V., Hairston, W.D., McDowell, K., Westerfield, M. and Robbins, K. (2012) Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. Journal of Neuroscience Methods, 208, 181-189. doi:10.1016/j.jneumeth.2012.05.017
[45] Wada, M., Ogawa, T., Sonoda, H. and Sato, K. (1996) Development of relative power contribution ratio of the EEG in normal children: A multivariate autoregressive modeling approach. Electroencephalography and Clinical Neurophysiology, 98, 69-75. doi:10.1016/0013-4694(95)00187-5
[46] Ogawa, T., Sugiyama, A., Ishiwa, S., Suzuki, M., Ishihara, T. and Sato, K. (1984) Ontogenic development of autoregressive component waves of waking EEG in normal infants and children. Brain and Development, 6, 289-303. doi:10.1016/S0387-7604(84)80042-X
[47] M?ller, E., Schack, B., Arnold, M. and Witte, H. (2001) Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. Journal of Neuroscience Methods, 105, 143-158. doi:10.1016/S0165-0270(00)00350-2
[48] Schl?gl, A. and Supp, G. (2006) Analyzing event-related EEG data with multivariate autoregressive parameters. Progress in Brain Research, 159, 135-147. doi:10.1016/S0079-6123(06)59009-0
[49] Pfurtscheller, G. and Haring, G. (1972) The use of an EEG autoregressive model for the time-saving calculation of spectral power density distributions with a digital computer. Electroencephalography and Clinical Neurophysiology, 33, 113-115. doi:10.1016/0013-4694(72)90034-X
[50] Kleine, B. (1973) Some comments on the use of an EEG autoregres-sive model for the time-saving calculation of spectral power density distributions with a digital computer. Elec-troencephalography and Clinical Neurophysiology, 35, 331-332. doi:10.1016/0013-4694(73)90246-0
[51] Bianchi, A.M., Mainardi, L.T, Meloni, C., Chierchia, S. and Cerutti, S. (1997) Continuous monitoring of the sympatho-vagal balance through spectral analysis. Engineering in Medicine and Biology Magazine, IEEE, 16, 64-73. doi:10.1109/51.620497
[52] Ebrahimzadeh, E. and Pooyan, M. (2011) Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals. Journal of Biomedical Science and Engineering, 4, 699-706. doi:10.4236/jbise.2011.411087
[53] Baudat, G. and Anouar, F. (2000) Generalized discriminant analysis using a kernel approach. Neural Computation, 12, 2385-2404. doi:10.1162/089976600300014980
[54] Subasi, A. and Ismailursoy, M. (2010) EEG signal classification using PCA, ICA, LDA and support vector machines, Expert Systems with Applications, 37, 8659-8666. doi:10.1016/j.eswa.2010.06.065
[55] Rajendra A.U., Vi-nitha, S., Peng, C.A., and Suri, J. (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework, Expert Systems with Applications, 39, 9072-9078. doi:10.1016/j.eswa.2012.02.040
[56] Polat, K. and Güne?, S. (2008) .Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Systems with Applications, 34, 2039-2048. doi:10.1016/j.eswa.2007.02.009
[57] M. Bernat, Williams, W. and Gehring, W. (2005) Decomposing ERP time-frequency energy using PCA, Clinical Neurophysiology, 116, 1314-1334. doi:10.1016/j.clinph.2005.01.019
[58] Cawley, G. and Talbot, N. (1998) Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognition, 36, 2585-2592. doi:10.1016/S0031-3203(03)00136-5
[59] Vapnik, V.N. (1998) The nature of statistical learning theory. 2nd Edition, John Wiley and Sons, Inc., New York.
[60] Cover, T.M. and Hart, P.E. (1967) Nearest neighbor patternclassification. Information Theory, 13, 21-27. doi:10.1109/TIT.1967.1053964
[61] Kutlu, Y. and Kuntalp, D. (2012) Feature extraction for ECG heart beats using higher order statistics of WPD coefficients. Computer Methods and Programs in Biomedicine, 105, 257-267. doi:10.1016/j.cmpb.2011.10.002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.