[1]
|
T.Bartsch,A.Pankov and Z.Q.Wang, Nonlinear Sch?dinger equations with steep potential well, Commun. Contemp. Math., 3(2001),549-569.
|
[2]
|
Y.Ding and K.Tanaka, Multiplicity of positive solutions of a nonlinear Sch?dinger equation, Manuscripta Math., 112(2003),109-135.
|
[3]
|
D.G.DE Figueiredo and Y.Ding, Solutions of a non-linear Schr?dinger equation, Discrete Contin. Dynam. Systems, 8(2002),563-584.
|
[4]
|
D.Gilbarg and N.S.Trudinger, it Elliptic Partial Diffential Equations of Second Order, Second edition, Springer-Verlag,Berlin, 1983.
|
[5]
|
F.A.Van Heerden and Z.Q.Wang, Schr?dinger tyoe equations with asymptotically linear nonlinearities, it Differential Integral Equations, 16(2003),257-280.
|
[6]
|
L.Jeanjean, M.Lucia and C.A.Stuart, Branches of solutions to semilinear ellptic equations on R^N, Math. Z., 230 (1999), 79-105.
|
[7]
|
L.Jeanjean and K.Tanaka, A positive solution for an asymptotically linear elliptic problem onR^N autonomous at infinity, WSAIM Control Optim. Calc. Var., 7(2002), 597-614.
|
[8]
|
Z. Liu and Z.Q. Wang, Existence of a positive solution of an elliptic equation onR^N, Proc. Roy. Soc. Edinburgh, 134 A (2004), 191-200.
|
[9]
|
C.A.Stuart, An introduction to elliptic equations on R^N, in Nonlinear Functional Analysis and Applications toDifferential Equations, editors A.Ambrosetti, K.C. Chang, I.Ekeland, World Scientific, Singapore,1998.
|
[10]
|
C.A.Stuart and Huansong Zhou, Global branch of solutios for nonlinear Schr?dinger equations with deepening potential well, Proc.London Math.Soc., 92 (2006) 655-681.
|
[11]
|
G.T. Whyburn, Topological Analysis, Princeton University Press, Preceton 1958.
|