[1]
|
Lesnefsky, E.J., Lundergan, C.F., Hodgson, J.M., et al. (1996) Increased left ventricular dysfunction in elderly patients despite successful thrombolysis: The GUSTO-I angiographic experience. Journal of the American College of Cardiology, 28, 331-337.
doi:10.1016/0735-1097(96)00148-9
|
[2]
|
Ataka, K., Chen, D., Levitsky, S., et al. (1992) Effect of aging on intracellular Ca2+, pHi, and contractility during ischemia and reperfusion. Circulation, 86, 371-376.
|
[3]
|
Frolkis, V.V., Frolkis, R.A., Mkhitarian, L.S., et al. (1991) Age-dependent effects of ischemia and reperfusion on cardiac function and Ca2+ transport in myocardium. Gerontology, 37, 233-239. doi:10.1159/000213266
|
[4]
|
Lesnefsky, E.J., Gallo, D.S., Ye, J., et al. (1994) Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. Journal of Laboratory and Clinical Medicine, 124, 843-851.
|
[5]
|
Liu, L., Azhar, G., Gao, W., et al. (1998) Bcl-2 and Bax expression in adult rat hearts after coronary occlusion: Age-associated differences. American Journal of Physiology, 275, R315-322.
|
[6]
|
Lucas, D.T. and Szweda, L.I. (1998) Cardiac reperfusion injury: Aging, lipid peroxidation, and mitochondrial dys-function. Proceedings of the National Academy of Sciences, 95, 510-514. doi:10.1073/pnas.95.2.510
|
[7]
|
Tani, M., Suganuma, Y., Hasegawa, H., et al. (1997) Decrease in ischemic tolerance with aging in isolated perfused Fischer 344 rat hearts: Relation to increases in intracellular Na+ after ischemia. Journal of Molecular and Cellular Cardiology, 29, 3081-3089.
doi:10.1006/jmcc.1997.0533
|
[8]
|
Azhar, G., Gao, W., Liu, L., et al. (1999) Ischemia-reperfusion in the adult mouse heart influence of age. Experimental Gerontology, 34, 699-714.
doi:10.1016/S0531-5565(99)00031-5
|
[9]
|
Lesnefsky, E.J., Moghaddas, S., Tandler, B., et al. (2001) Mitochondrial dysfunction in cardiac disease: Ischemia-reperfusion, aging, and heart failure. Journal of Molecular and Cellular Cardiology, 33, 1065-1089.
doi:10.1006/jmcc.2001.1378
|
[10]
|
Lesnefsky, E.J., Gudz, T.I., Migita, C.T., et al. (2001) Ischemic injury to mitochondrial electron transport in the aging heart: Damage to the iron-sulfur protein subunit of electron transport complex III. Archives of Biochemistry and Biophysics, 385, 117-128.
doi:10.1006/abbi.2000.2066
|
[11]
|
Moghaddas, S., Hoppel, C.L. and Lesnefsky, E.J. (2003) Aging defect at the Qo site of complex III augments oxyradical production in rat heart interfibrillar mitochon-dria. Archives of Biochemistry and Biophysics, 414, 59-66. doi:10.1016/S0003-9861(03)00166-8
|
[12]
|
Abete, P., Testa, G., Ferrara, N., et al. (2002) Cardiopro- tective effect of ischemic preconditioning is preserved in food-restricted senescent rats. American Journal of Physiology—Heart and Circulatory Physiology, 282, H1978-H1987.
|
[13]
|
Tani, M., Honma, Y., Hasegawa, H., et al. (2001) Direct activation of mitochondrial KATP channels mimics preconditioning but protein kinase C activation is less effective in middle-aged rat hearts. Cardiovascular Research, 49, 56-68. doi:10.1016/S0008-6363(00)00240-6
|
[14]
|
Ishihara, M., Sato, H., Tateishi, H., et al. (2000) Beneficial effect of prodromal angina pectoris is lost in elderly patients with acute myocardial infarction. American Heart Journal, 139, 881-888.
doi:10.1016/S0002-8703(00)90021-8
|
[15]
|
Lee, T.M., Su, S.F., Chou, T.F., et al. (2002) Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation, 105, 334-340.
doi:10.1161/hc0302.102572
|
[16]
|
Przyklenk, K., Maynard, M., Darling, C.E., et al. (2008) Aging mouse hearts are refractory to infarct size reduc- tion with post-conditioning. Journal of the American College of Cardiology, 51, 1393-1398.
doi:10.1016/j.jacc.2007.11.070
|
[17]
|
Quinlan, C.L., Costa, A.D., Costa, C.L., et al. (2008) Conditioning the heart induces formation of signalosomes that interact with mitochondria to open mitoKATP chan- nels. American Journal of Physiology—Heart and Circulatory Physiology, 295, H953-H961.
doi:10.1152/ajpheart.00520.2008
|
[18]
|
Juhaszova, M., Zorov, D.B., Yaniv, Y., et al. (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circulation Research, 104, 1240-1252.
doi:10.1161/CIRCRESAHA.109.197996
|
[19]
|
Vessey, D.A., Kelley, M., Li, L., et al. (2009) Sphingosine protects aging hearts from ischemia/reperfusion injury: Superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxidative Medicine and Cellular Longevity, 2, 146-151. doi:10.4161/oxim.2.3.8622
|
[20]
|
Boengler, K., Konietzka, I., Buechert, A., et al. (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. American Journal of Physiology—Heart and Circulatory Physiology, 292, H1764-H1769.
doi:10.1152/ajpheart.01071.2006
|
[21]
|
Schulman, D., Latchman, D.S. and Yellon, D.M. (2001) Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. American Journal of Physiology—Heart and Circulatory Physiology, 281, H1630-H1636.
|
[22]
|
Downey, J.M. and Cohen, M.V. (2009) Why do we still not have cardioprotective drugs? Circulation Journal, 73, 1171-1177. doi:10.1253/circj.CJ-09-0338
|
[23]
|
Hausenloy, D.J., Ong, S.B. and Yellon, D.M. (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Research in Cardiology, 104, 189-202.
doi:10.1007/s00395-009-0010-x
|
[24]
|
Vinten-Johansen, J., Zhao, Z.Q., Jiang, R., et al. (2007) Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. Journal of Applied Physiology, 103, 1441-1448.
doi:10.1152/japplphysiol.00642.2007
|
[25]
|
Long, P., Nguyen, Q., Thurow, C., et al. (2002) Caloric restriction restores the cardioprotective effect of preconditioning in the rat heart. Mechanisms of Ageing and Development, 123, 1411-1413.
doi:10.1016/S0047-6374(02)00068-4
|
[26]
|
Abete, P., Testa, G., Galizia, G., et al. (2005) Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart. Experimental Gerontology, 40, 43-50.
doi:10.1016/j.exger.2004.10.005
|
[27]
|
Fenton, R.A., Dickson, E.W. and Dobson Jr., J.G. (2005) Inhibition of phosphatase activity enhances preconditioning and limits cell death in the ischemic/reperfused aged rat heart. Life Sciences, 77, 3375-3388.
doi:10.1016/j.lfs.2005.05.047
|
[28]
|
Jahangir, A., Ozcan, C., Holmuhamedov, E.L., et al. (2001) Increased calcium vulnerability of senescent cardiac mitochondria: Protective role for a mitochondrial potassium channel opener. Mechanisms of Ageing and Development, 122, 1073-1086.
doi:10.1016/S0047-6374(01)00242-1
|
[29]
|
Fannin, S.W., Lesnefsky, E.J., Slabe, T.J., et al. (1999) Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Archives of Biochemistry and Biophysics, 372, 399-407. doi:10.1006/abbi.1999.1508
|
[30]
|
Lesnefsky, E.J., Tandler, B., Ye, J., et al. (1997) Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. American Journal of Physiology, 273, H1544-H1554.
|
[31]
|
Palmer, J.W., Tandler, B. and Hoppel, C.L. (1977) Bio-chemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. Journal of Biological Chemistry, 252, 8731-8739.
|
[32]
|
Lesnefsky, E.J., Gudz, T.I., Moghaddas, S., et al. (2001) Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cyto-chrome c binding site. Journal of Molecular and Cellular Cardiology, 33, 37-47. doi:10.1006/jmcc.2000.1273
|
[33]
|
Paradies, G., Ruggiero, F.M., Dinoi, P., et al. (1993) Age-dependent decrease in the cytochrome c oxidase activity and changes in phopsholiids in rat-heart mitochon-dria. Archives of Gerontology and Geriatrics, 16, 262- 272. doi:10.1016/0167-4943(93)90037-I
|
[34]
|
Lemieux, H., Vazquez, E.J., Fujioka, H., et al. (2010) Decrease in mitochondrial function in rat cardiac perme- abilized fibers correlates with the aging phenotype. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 65, 1157-1164.
doi:10.1093/gerona/glq141
|
[35]
|
Ljubicic, V., Menzies, K.J. and Hood, D.A. (2010) Mito-chondrial dysfunction is associated with a proapoptotic cellular environment in senescent cardiac muscle. Mecha- nisms of Ageing and Development, 131, 79-88.
doi:10.1016/j.mad.2009.12.004
|
[36]
|
Kypriotakis, G., Vazquez, E., Lesnefsky, E.J., et al. (2007) Oxidative phosphorylation provides a valuable tool for identifying the aging mitochondrial phenotype. 12th Congress of the International Association of Biomedical Gerontology Molecular Mechanisms and Models of Aging, Spetses Island, 20-24 May 2007, Abstratct, p. 31.
|
[37]
|
Crofts, A.R., Barquera, B., Gennis, R.B., et al. (1999) Mechanism of ubiquinol oxidation by the bc(1) complex: Different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry, 38, 15807-15826. doi:10.1021/bi990962m
|
[38]
|
Crofts, A.R., Guergova, K.M., Huang, L., et al. (1999) Mechanism of ubiquinol oxidation by the bc(1) complex: Role of the iron sulfur protein and its mobility. Biochemistry, 38, 15791-15806. doi:10.1021/bi990961u
|
[39]
|
Trumpower, B.L. (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. Journal of Biological Chemistry, 265, 11409-11412.
|
[40]
|
Trumpower, B.L. (2002) A concerted, alternating sites mechanism of ubiquinol oxidation by the dimeric cytochrome bc(1) complex. Biochimica et Biophysica Acta, 1555, 166-173. doi:10.1016/S0005-2728(02)00273-6
|
[41]
|
Lesnefsky, E.J. and Hoppel, C.L. (2003) Ischemia-reperfusion injury in the aged heart: Role of mitochondria. Archives of Biochemistry and Biophysics, 420, 287-297.
doi:10.1016/j.abb.2003.09.046
|
[42]
|
Lee, D.W., Selamoglu, N., Lanciano, P., et al. (2011) Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen speices production by cytochrome bc1. Journal of Biological Chemistry, 286, 18139-18148.
doi:10.1074/jbc.M110.214460
|
[43]
|
Chen, Q., Vazquez, E.J., Moghaddas, S., et al. (2003) Production of reactive oxygen species by mitochondria: Central role of complex III. Journal of Biological Chemistry, 278, 36027-36031. doi:10.1074/jbc.M304854200
|
[44]
|
Gille, L. and Nohl, H. (2001) The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Archives of Biochemistry and Biophysics, 388, 34-38.
doi:10.1006/abbi.2000.2257
|
[45]
|
Han, D., Antunes, F., Canali, R., et al. (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. Journal of Biological Chemistry, 278, 5557-5563.
doi:10.1074/jbc.M210269200
|
[46]
|
St-Pierre, J., Buckingham, J.A., Roebuck, S.J., et al. (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. Journal of Biological Chemistry, 277, 44784-44790.
doi:10.1074/jbc.M207217200
|
[47]
|
Suh, J.H., Heath, S.H. and Hagen, T.M. (2003) Two sub-populations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress. Free Radical Biology & Medicine, 35, 1064-1072.
doi:10.1016/S0891-5849(03)00468-4
|
[48]
|
Chen, Q., Moghaddas, S., Hoppel, C.L., et al. (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. American Journal of Physiology— Cell Physiology, 294, C460-466.
doi:10.1152/ajpcell.00211.2007
|
[49]
|
Lesnefsky, E.J., Slabe, T.J., Stoll, M.S., et al. (2001) Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. American Journal of Physiology, 280, H2770-H2778.
|
[50]
|
Paradies, G., Petrosillo, G., Gadaleta, M.N., et al. (1999) The effect of aging and acetyl-L-carnitine on the pyruvate transport and oxidation in rat heart mitochondria. FEBS Letters, 454, 207-209.
doi:10.1016/S0014-5793(99)00809-1
|
[51]
|
Paradies, G., Ruggiero, F.M., Petrosillo, G., et al. (1992) The effect of aging and acetyl-L-carnitine on the acitivity of the phophate carrier and on the phospholipid composition in rat heart mitochondria. Biochimica et Biophysica Acta, 406, 136-138.
|
[52]
|
Paradies, G., Ruggiero, F.M., Petrosillo, G., et al. (1994) The effect of aging and acetyl-L-carnitine on the function and on the lipid composition of rat heart mitochondria. Annals of the New York Academy of Sciences, 717, 233-243. doi:10.1111/j.1749-6632.1994.tb12093.x
|
[53]
|
Paradies, G., Ruggiero, F.M., Petrosillo, G., et al. (1994) Effect of aging and acetyl-L-carnitine on the activity of cytochrome oxidase and adenine nucleotide translocase in rat heart mitochondria. FEBS Letters, 350, 213-215.
doi:10.1016/0014-5793(94)00763-2
|
[54]
|
Paradies, G., Ruggiero, F.M., Petrosillo, G., et al. (1996) Age-dependent impairment of mitochondrial function in rat heart tissue. Effect of pharmacological agents. Annals of the New York Academy of Sciences, 786, 252-263.
doi:10.1111/j.1749-6632.1996.tb39068.x
|
[55]
|
Lesnefsky, E.J., He, D., Moghaddas, S., et al. (2006) Reversal of mitochondrial defects before ischemia pro- tects the aged heart. FASEB Journal, 20, 1543-1545.
doi:10.1096/fj.05-4535fje
|
[56]
|
Sparagna, G.C. and Lesnefsky, E.J. (2009) Cardiolipin remodeling in the heart. Journal of Cardiovascular Pharmacology, 53, 290-301.
doi:10.1097/FJC.0b013e31819b5461
|
[57]
|
Moghaddas, S., Stoll, M.S., Minkler, P.E., et al. (2002) Preservation of cardiolipin content during aging in rat heart interfibrillar mitochondria. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57, B22-B28. doi:10.1093/gerona/57.1.B22
|
[58]
|
Gadaleta, M.N., Petruzzella, V., Daddabbo, L., et al. (1994) Mitochondrial DNA transcription and translation in aged rat. Effect of acetyl-L-carnitine. Annals of the New York Academy of Sciences, 717, 150-160.
doi:10.1111/j.1749-6632.1994.tb12082.x
|
[59]
|
Gadaleta, M.N., Petruzzella, V., Fracasso, F., et al. (1990) Acetyl-L-carnitine increases cytochrome oxidase subunit I mRNA content in hypothyroid rat liver. FEBS Letters, 277, 191-193. doi:10.1016/0014-5793(90)80841-6
|
[60]
|
Rosca, M.G., Lemieux, H. and Hoppel, C.L. (2009) Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Advanced Drug Delivery Reviews, 61, 1332-1342.
doi:10.1016/j.addr.2009.06.009
|
[61]
|
Ahn, B.H., Kim, H.S., Song, S., et al. (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences, 105, 14447-14452.
doi:10.1073/pnas.0803790105
|
[62]
|
Lombard, D.B., Alt, F.W., Cheng, H.L., et al. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and Cellular Biology, 27, 8807-8814. doi:10.1128/MCB.01636-07
|
[63]
|
Carrea, F.P., Lesnefsky, E.J., Repine, J.E., et al. (1991) Reduction of canine myocardial infarct size by a diffusible reactive oxygen metabolite scavenger. Efficacy of dimethylthiourea given at the onset of reperfusion. Circulation Research, 68, 1652-1659.
doi:10.1161/01.RES.68.6.1652
|
[64]
|
Stewart, S., Lesnefsky, E.J. and Chen, Q. (2009) Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Translational Research, 153, 224-231.
|
[65]
|
Przyklenk, K., Maynard, M., Greiner, D.L., et al. (2011) Cardioprotection with postconditioning: Loss of efficacy in murine models of type-2 and type-1 diabetes. Antio-xidants & Redox Signaling, 14, 781-790.
|
[66]
|
Chen, Q., Camara, A.K., Stowe, D.F., et al. (2007) Modulation of electron transport protects cardiac mito-chondria and decreases myocardial injury during ischemia and reperfusion. American Journal of Physiology—Cell Physiology, 292, C137-C147.
doi:10.1152/ajpcell.00270.2006
|