Modeling of Complex Solitary Waveforms for Micro-Width Doped ZnO Waveguides


The potential applications of metallic oxides as supporters of nonlinear phenomena are not novel. ZnO shows high nonlinearity in the range 600 - 1200 nm of the input wavelength [1]. ZnO thus make way to become efficient photoluminescent devices. In this paper, the above mentioned property of ZnO is harnessed as the primary material for the fabrication of waveguides. Invoking nonlinear phenomena can support intense nonlinear pulses which can be a boost to the field of communication. The modeling characteristics of undoped and doped ZnO also confirm the propagation of a solitary pulse [1]. An attempt to generalize the optical pattern of the doped case with varying waveguide widths is carried out in the current investigation. The variations below 6 um are seen to exhibit complex waveforms which resemble a continuum pulse. The input peak wavelength is kept constant at 600 nm for the modeling.

Share and Cite:

Mohan, R. , Sivakumar, M. and Sreelatha, K. (2012) Modeling of Complex Solitary Waveforms for Micro-Width Doped ZnO Waveguides. International Journal of Modern Nonlinear Theory and Application, 1, 130-134. doi: 10.4236/ijmnta.2012.14020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. E. Mohan, K. S. Sreelatha, M. Sivakumar and A. Krishnasree, “Modeling of Doped ZnO Waveguides for Nonlinear Applications,” Advanced Materials Research, Vol. 403-408, 2011, pp. 3753-3757. 10.4028/
[2] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor,” Science, Vol. 300, No. 5623, 2003, pp. 1269-1272. doi:10.1126/science.1083212
[3] T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori and T. Mise, “Novel Device Structure for Cu(In,Ga)Se2 Thin Film Solar Cells Using Transparent Conducting Oxide Back and Front Contacts,” Solar Energy, Vol. 77, No. 6, 2004, pp. 739-747.
[4] S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang, et al., “Fabrication of ZnO Thin Film Diode Using Laser Annealing,” Thin Solid Films, Vol. 437, No. 1, 2005, pp. 31-34.
[5] R. Konenkamp, R. C. Word and C. Schlegel, “Vertical Nanowire Light-Emitting Diode,” Applied Physics Letters, Vol. 85, No. 24, 2004, pp. 6004-6006. doi:10.1063/1.1836873
[6] S. Trolier-McKinstry and P. Muralt, “Thin Film Piezo-electrics for MEMS,” Journal of Electroceramics, Vol. 12, No. 1-2, 2004, pp. 7-17. doi:10.1023/B:JECR.0000033998.72845.51
[7] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang and Y. Zhang, “Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces,” Advanced Functional Materials, Vol. 14, No. 10, 2004, pp. 943-956. doi:10.1002/adfm.200400180
[8] M. S. Wagh, L. A. Patil, T. Seth and D. P. Amalnerkar, “Surface Cupricated SnO2-ZnO Thick Films as a H2S Gas Sensor,” Materials Chemistry and Physics, Vol. 84, No. 2-3, 2004, pp. 228-233. doi:10.1016/S0254-0584(03)00232-3
[9] Y. Ushio, M. Miyayama and H. Yanagida, “Effects of Interface States on Gas-Sensing Properties of a CuO/ZnO Thin-Film Heterojunction,” Sensors and Actuators B: Chemical, Vol. 17, No. 3, 1994, pp. 221-226.
[10] H. Harima, “Raman Studies on Spintronics Materials Based on Wide Bandgap Semiconductors,” Journal of Physics: Condensed Matter, Vol. 16, No. 48, 2004, pp. S5653-S5660. doi:10.1088/0953-8984/16/48/023
[11] S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton and T. Steiner, “Dilute Magnetic Semiconducting Oxides,” Semi-conductor Science and Technology, Vol. 19, No. 10, 2004, pp. R59-R74. doi:10.1088/0268-1242/19/10/R01
[12] ü. Ozgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S.-J. Cho and H. Morkoc, “A Comprehensive Review of ZnO Materials and Devices,” Journal of Applied Physics, Vol. 98, No. 4, 2005, pp. 041301-103
[13] O. Lupan, S. Shishiyanu, L. Chow and T. Shishiyanu, “Nanostructured Zinc Oxide as Sensors by Successive Ionic Layer Adsorption and Reaction Method and Rapid Photothermal Processing,” Thin Solid Films, Vol. 516, No. 10, 2008, pp. 3338-3345. doi:10.1016/j.tsf.2007.10.104
[14] A. A. Ibrahim, A. Ashour, “ZnO/Si Solar Cell Fabricated by Spray Pyrolysis Technique,” Journal of Materials Science: Materials in Electronics, Vol. 17, No. 10, 2006, pp. 835-839.
[15] W. W. Wenas and S. Riyadi, “Carrier Transport in High-Ef?ciency ZnO/SiO2/Si Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 90 No. 18-19, 2006, pp. 3261-3267.
[16] B. J. Lokhande, P. S. Patil and M. D. Uplane, “Studies on Structural, Optical and Electrical Properties of Boron Doped Zinc Oxide Films Prepared by Spray Pyrolysis Technique,” Physica B: Condensed Matter, Vol. 302-303, 2001, pp. 59-63.
[17] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, G. A. Gehring, Nat. Mater. Vol. 2, 2003, pp. 673. doi:10.1038/nmat984
[18] Gouve a, C. A. K.; Wypych, F.; Moraes, S. G.; Dura ′ n, N.; Peralta-mora, P. Chemosphere 2000, 40, 427.?
[19] R. H. Wang, J. H. Z. Xin, Y. Yang, H. F. Liu, L. M. Xu and J. H. Hu, “The Characteristics and Photocatalytic Activities of Silver Doped ZnO Nanocrystallites,” Applied Surface Science, Vol. 227, No. 1-4, 2004, pp. 312-317. doi:10.1016/j.apsusc.2003.12.012
[20] A. N. Gruzintsev, V. T. Volkov and E. E. Yakimov, Semi Conductors, Vol. 37, 2003, pp. 275-279.
[21] G. I. Stegeman and R. H. Stolen, “Waveguides and Fibers for Nonlinear Optics,” Journal of the Optical Society of America B, Vol. 6, No. 4, 1989, pp. 652-662.
[22] S. C. Rashleigh and R. H. Stolen, “Preservation of Polarization in Single-Mode Fibers,” Laser Focus, Vol. 19, No. 5, 1983, pp. 155-161.
[23] L. H. Yin, Q. Lin and G. P. Agrawal, “Dispersion Tailoring and Soliton Propagation in Silicon Waveguides,” Optics Letters, Vol. 31, No. 9, 2006, pp. 1295-1297.
[24] M. Foster and A. Gaeta, “Ultra-Low Threshold Supercontinuum Generation in Subwavelength Waveguides,” Optics Express, Vol. 12, No. 14, 2004, pp. 3137-3143. doi:10.1364/OPEX.12.003137
[25] R. Gangwar, S. P. Singh and N. Singh, “Soliton Based Optical Communication,” PIER, Vol. 74, No. 3, 2007, pp. 157-166. doi:10.2528/PIER07050401
[26] G. P. Agrawal, “Nonlinear Fiber Optics,” 4th Edition, Academic Press, Waltham, 2001
[27] A. M. Zheltikov, “The Physical Limit for the Waveguide Enhancement of Nonlinear-Optical Processes,” Optics and Spectroscopy, Vol. 95, No. 3, 2003, pp. 410-415. doi:10.1134/1.1613005
[28] A. Suryanto “Numerical Study of Spatial Soliton Propagation in a Triangular Waveguide with Nonlocal Nonlinearity,” Proceedings of the Third International Conference on Mathematics and Natural Sciences (ICMNS 2010), Bandung, 23-25 November 2010.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.