Green tea extract and epigallocatechin 3-gallate reduced labile iron pool and protected oxidative stress in iron-loaded cultured hepatocytes


Cellular and mitochondrial damage can be caused by labile iron pool (LIP) and mediated by reactive oxygen species (ROS). Livers of the thalassemias have highly increased levels of LIP and ROS. Green tea extract (GTE) and epigallocatechin 3-gallatte (EGCG) can potentially protect liver inflammation, fibrosis and cancer due to their anti-oxidative and iron-chelating activities. We studied the effects of GTE and EGCG on intracellular LIP and ROS, and mitochondrial membrane potential (ΔΨm) in mouse hepatocyte and HepG2 cell cultures using specific fluorescent techniques. Treatment with GTE (12.5 - 25 mg/dl) and EGCG (25 - 50 μM) significantly lowered levels of ΔΨm in the mouse hepatocytes; however, combined treatment of 25 μM DFP with GTE and EGCG did not enhance the decrease of hepatic ΔΨm. The results showed that GTE and EGCG effectively removed the intracellular LIP and ROS, and relieved the mitochondria membrane collapse of the liver cells, suggesting a hepatoprotective effect of green tea extract and EGCG in the hepatocytes with iron overload. Their actions might be related to iron-chelating and free radical-scavenging capacities. Whether the effects can improve iron overload and oxidative stress in thalassemia patients remains to be seen upon further examination.

Share and Cite:

Srichairatanakool, S. , Kulprachakarn, K. , Pangjit, K. , Pattanapanyasat, K. and Fuchaeron, S. (2012) Green tea extract and epigallocatechin 3-gallate reduced labile iron pool and protected oxidative stress in iron-loaded cultured hepatocytes. Advances in Bioscience and Biotechnology, 3, 1140-1150. doi: 10.4236/abb.2012.38140.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Lesnefsky, E.J. (1994) Tissue iron overload and mechanisms of iron catalyzed oxidative injury. Advances in Experimental Medicine and Biology, 366, 129-146. doi:10.1007/978-1-4615-1833-4_10
[2] Britton, R.S., Ramm, G.A., Olynyk, J., Singh, R., O’Neill, R. and Bacon, B.R. (1994) Pathophysiology of iron toxicity. Advances in Experimental Medicine and Biology, 356, 239-253. doi:10.1007/978-1-4615-2554-7_26
[3] Emerit, J., Beaumont, C. and Trivin, F. (2001) Iron metabolism, free radicals, and oxidative injury. Biomedicine & Pharmacotherapy, 55, 333-339. doi:10.1016/S0753-3322(01)00068-3
[4] Cederbaum, A.I. (2003) Iron and CYP2E1-dependent oxidative stress and toxicity. Alcohol, 30, 115-120. doi:10.1016/S0741-8329(03)00104-6
[5] Epsztejn, S., Kakhlon, O., Glickstein, H., Breuer, W. and Cabantchik, I. (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Analytical Biochemistry, 248, 31-40. doi:10.1006/abio.1997.2126
[6] Gackowski, D., Kruszewsk, M., Banaszkiewicz, Z., Jawien, A. and Olinski, R. (2002) Lymphocyte labile iron pool, plasma iron, transferrin saturation and ferritin levels in colon cancer patients. Acta Biochimica Polonica, 49, 269-272.
[7] Lipinski, P., Drapier, J.C., Oliveira, L., Retmanska, H., Sochanowicz, B. and Kruszewski, M. (2000) Intracellular iron status as a hallmark of mammalian cell susceptibility to oxidative stress: A study of L5178Y mouse lymphoma cell lines differentially sensitive to H(2)O(2). Blood, 95, 2960-2966.
[8] Petrat, F., de Groot, H. and Rauen, U. (2001) Subcellular distribution of chelatable iron: A laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. Biochemical Journal, 356, 61-69. doi:10.1042/0264-6021:3560061
[9] Corradini, E., Ferrara, F. and Pietrangelo, A. (2004) Iron and the liver. Pediatric Endocrinology Reviews, 2, 245-248.
[10] Caro, A.A. and Cederbaum, A.I. (2004) Oxidative stress, toxicology, and pharmacology of CYP2E1. Annual Review of Pharmacology and Toxicology, 44, 27-42. doi:10.1146/annurev.pharmtox.44.101802.121704
[11] Srichairatanakool, S., Ounjaijean, S., Thephinlap, C., Khansuwan, U., Phisalpong, C. and Fucharoen, S. (2006) Iron-chelating and free-radical scavenging activities of microwave-processed green tea in iron overload. Hemoglobin, 30, 311-327. doi:10.1080/03630260600642666
[12] Khokhar, S., Venema, D., Hollman, P.C., Dekker, M. and Jongen, W. (1997) A RP-HPLC method for the determination of tea catechins. Cancer Letter, 114, 171-172. doi:10.1016/S0304-3835(97)04653-3
[13] Guo, Q., Zhao, B., Li, M., Shen, S. and Xin, W. (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochimca et Biophysica Acta, 1304, 210- 222. doi:10.1016/S0005-2760(96)00122-1
[14] Anghileri, LJ. and Thouvenot, P. (2000) Natural polyphenols-iron interaction: Its biological importance. Biological Trace Element Research, 73, 251-258. doi:10.1385/BTER:73:3:251
[15] Jimenez-Lopez, J.M. and Cederbaum, A.I. (2004) Green tea polyphenol epigallocatechin-3-gallate protects HepG2 cells against CYP2E1-dependent toxicity. Free Radical Biology and Medicine, 36, 359-370. doi:10.1016/j.freeradbiomed.2003.11.016
[16] Higuchi, A., Yonemitsu, K., Koreeda, A. and Tsunenari, S. (2003) Inhibitory activity of epigallocatechin gallate (EGCg) in paraquat-induced microsomal lipid peroxidation—A mechanism of protective effects of EGCg against paraquat toxicity. Toxicology, 183, 143-149. doi:10.1016/S0300-483X(02)00512-7
[17] Al-Bloushi, S., Safer, A.M., Afzal, M. and Mousa, S.A. (2009) Green tea modulates reserpine toxicity in animal models. Journal of Toxicological Sciences, 34, 77-87. doi:10.2131/jts.34.77
[18] Galati, G., Lin, A., Sultan, A.M. and O’Brien, P.J. (2006) Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radical Biology and Medicine, 40, 570-580. doi:10.1016/j.freeradbiomed.2005.09.014
[19] Huang, X., Kojima-Yuasa, A., Xu, S., Norikura, T., Kennedy, D.O., Hasuma, T. and Matsui-Yuasa, I. (2008) Green tea extract enhances the selective cytotoxic activity of Zizyphus jujuba extracts in HepG2 cells. The American Journal of Chinese Medicine, 36, 729-744. doi:10.1142/S0192415X08006193
[20] Ounjaijean, S., Thephinlap, C., Khansuwan, U., Phisalapong, C., Fucharoen, S., Porter, J.B. and Srichairatanakool, S. (2008) Effect of green tea on iron status and oxidative stress in iron-loaded rats. Medicinal Chemistry, 4, 365-370. doi:10.2174/157340608784872316
[21] Saewong, T., Ounjaijean, S., Mundee, Y., Pattanapanyasat, K., Fucharoen, S., Porter, J.B. and Srichairatanakool, S. (2010) Effects of green tea on iron accumulation and oxidative stress in livers of iron-challenged thalassemic mice. Medicinal Chemistry, 6, 57-64. doi:10.2174/157340610791321479
[22] Tyson, C.A., LeValley, S.E., Chan, R., Hobbs, P.D. and Dawson, M.I. (1984) Biological evaluation of some ionophore-polymeric chelator combinations for reducing iron overload. Journal of Pharmacology and Experimental Therapeutics, 228, 676-681.
[23] Pippard, M.J., Jackson, M.J., Hoffman, K., Petrou, M. and Modell, C.B. (1986) Iron chelation using subcutaneous infusions of diethylene triamine penta-acetic acid (DTPA). Scandinavian Journal of Haematology, 36, 466- 472. doi:10.1111/j.1600-0609.1986.tb02282.x
[24] Wonke, B., Wright, C. and Hoffbrand, A.V. (1998) Combined therapy with deferiprone and desferrioxamine. British Journal of Haematology, 103, 361-364. doi:10.1046/j.1365-2141.1998.01002.x
[25] Balveer, K., Pyar, K. and Wonke, B. (2000) Combined oral and parenteral iron chelation in beta thalassaemia major. Medical Journal of Malaysia, 55, 493-497.
[26] Wu, D. and Cederbaum, A.I. (2008) Development and properties of HepG2 cells that constitutively express CYP2E1. Methods in Molecular Biology, 447, 137-150. doi:10.1007/978-1-59745-242-7_11
[27] Huang, Z.Z., Chen, C., Zeng, Z., Yang, H., Oh, J., Chen, L. and Lu, S.C. (2001) Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. The FASEB Journal, 15, 19-21.
[28] Trinder, D., Batey, R.G., Morgan, E.H. and Baker, E. (1990) Effect of cellular iron concentration on iron uptake by hepatocytes. American Journal of Physiology, 259, G611-G617.
[29] McAbee, D.D. and Ling, Y.Y. (1997) Iron-loading of cultured adult rat hepatocytes reversibly enhances lactoferrin binding and endocytosis. Journal of Cellular Physiology, 171, 75-86. doi:10.1002/(SICI)1097-4652(199704)171:1<75::AID-JCP9>3.0.CO;2-E
[30] Staubli, A. and Boelsterli, U.A. (1998) The labile iron pool in hepatocytes: Prooxidant-induced increase in free iron precedes oxidative cell injury. American Journal of Physiology, 274, G1031-1037.
[31] Perez-de-Arce, K., Foncea, R. and Leighton, F. (2005) Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants. Biochemical and Biophysical Research Communications, 338, 1103-1109. doi:10.1016/j.bbrc.2005.10.053
[32] Petit, T., Izbicka, E., Lawrence, R.A., Nalin, C., Weitman, S.D. and Von Hoff, D.D. (1999) Activity of MKT 077, a rhodacyanine dye, against human tumor colony-forming units. Anticancer Drugs, 10, 309-315. doi:10.1097/00001813-199903000-00010
[33] Thephinlap, C., Ounjaijean, S., Khansuwan, U., Fucharoen, S., Porter, J.B. and Srichairatanakool, S. (2007) Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress. Medicinal Chemistry, 3, 289-296. doi:10.2174/157340607780620608
[34] Olivieri, N.F., Brittenham, G.M., Matsui, D., Berkovitch, M., Blendis, L.M., Cameron, R.G., McClelland, R.A., Liu, P.P., Templeton, D.M. and Koren, G. (1995) Iron-chelation therapy with oral deferipronein patients with thalassemia major. The New England Journal of Medicine, 332, 918-922. doi:10.1056/NEJM199504063321404
[35] Porter, J.B. (1997) A risk-benefit assessment of ironchelation therapy. Drug Safety, 17, 407-421. doi:10.2165/00002018-199717060-00006
[36] Porter, J.B. (2009) Optimizing iron chelation strategies in beta-thalassaemia major. Blood Reviews, 23, S3-S7. doi:10.1016/S0268-960X(09)70003-7
[37] Scott, B.C., Butler, J., Halliwell, B. and Aruoma, O.I. (1993) Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radical Research Communications, 19, 241-253. doi:10.3109/10715769309056512
[38] Valberg, L.S., Ghent, C.N., Lloyd, D.A., Frei, J.V. and Chamberlain, M.J. (1978) Diagnostic efficacy of tests for the detection of iron overload in chronic liver disease. Canadian Medical Association Journal, 119, 229-236.
[39] Paterna, J.C., Boess, F., Staubli, A. and Boelsterli, U.A. (1998) Antioxidant and cytoprotective properties of Dtagatose in cultured murine hepatocytes. Toxicology and Applied Pharmacology, 148, 117-125. doi:10.1006/taap.1997.8315
[40] Baker, E., Baker, S.M. and Morgan, E.H. (1998) Characterisation of non-transferrin-bound iron (ferric citrate) uptake by rat hepatocytes in culture. Biochimica et Biophysica Acta, 1380, 21-30. doi:10.1016/S0304-4165(97)00120-7
[41] Richardson, D.R., Chua, A.C. and Baker, E. (1999) Activation of an iron uptake mechanism from transferrin in hepatocytes by small-molecular-weight iron complexes: Implications for the pathogenesis of iron-overload disease. Journal of Laboratory and Clinical Medicine, 133, 144-151. doi:10.1016/S0022-2143(99)90007-0
[42] Gaboriau, F., Chantrel-Groussard, K. Rakba, N., Loyer, P., Pasdeloup, N., Hider, R.C., Brissot, P. and Lescoat, G. (2004) Iron mobilization, cytoprotection, and inhibition of cell proliferation in normal and transformed rat hepatocyte cultures by the hydroxypyridinone CP411, compared to CP20: A biological and physicochemical study. Biochemical Pharmacology, 67, 1479-1487. doi:10.1016/j.bcp.2003.12.019
[43] Glickstein, H., El, R.B., Shvartsman, M. and Cabantchik, Z.I. (2005) Intracellular labile iron pools as direct targets of iron chelators: A fluorescence study of chelator action in living cells. Blood, 106, 3242-3250. doi:10.1182/blood-2005-02-0460
[44] Brock, J.H., Liceaga, J., Arthur, H.M. and Kontoghiorghes, G.J. (1990) Effect of novel 1-alkyl-3-hydroxy-2- methylpyrid-4-one chelators on uptake and release of iron from macrophages. American Journal of Hematology, 34, 21-25. doi:10.1002/ajh.2830340106
[45] Ramirez-Mares, M.V. and de Mejia, E,G. (2003) Comparative study of the antioxidant effect of ardisin and epigallocatechin gallate in rat hepatocytes exposed to benomyl and 1-nitropyrene. Food and Chemical Toxicology, 41, 1527-1535. doi:10.1016/S0278-6915(03)00169-8
[46] Ye, S.F., Hou, Z.Q. and Zhang, Q.Q. (2007) Protective effects of Phellinus linteus extract against iron overload-mediated oxidative stress in cultured rat hepatocytes. Phytotherapy Research, 21, 948-953. doi:10.1002/ptr.2182
[47] Meloche, B.A. and O’Brien, P.J. (1993) S-nitrosyl glutathione-mediated hepatocyte cytotoxicity. Xenobiotica, 23, 863-871. doi:10.3109/00498259309059414
[48] Bonkovsky, H.L. and Lambrecht, R.W. (2000) Iron-induced liver injury. Clinics in Liver Disease, 4, 409-429. doi:10.1016/S1089-3261(05)70116-1
[49] de Mejia, E.G. and Ramirez-Mares, M.V. (2002) Leaf extract from Ardisia compressa protects against 1-nitropyrene-induced cytotoxicity and its antioxidant defense disruption in cultured rat hepatocytes. Toxicology, 179, 151-162. doi:10.1016/S0300-483X(02)00242-1
[50] Barnum-Huckins, K. and Adrian, G.S. (2000) Iron regulation of transferrin synthesis in the human hepatoma cell line HepG2. Cell Biology International, 24, 71-77. doi:10.1006/cbir.1999.0456
[51] Chang, T.N., Huang, G.J., Ho, Y.L., Huang, S.S., Chang, H.Y. and Chang, Y.S. (2009) Antioxidant and antiproliferative activities of Crossostephium chinensis (L.) Makino. The American Journal of Chinese Medicine, 37, 797-814. doi:10.1142/S0192415X09007259
[52] Chen, Q., Galleano, M. and Cederbaum, A.I. (1998) Cytotoxicity and apoptosis produced by arachidonic acid in HepG2 cells overexpressing human cytochrome P-4502E1. Alcoholism: Clinical and Experimental Research, 22, 782- 84. doi:10.1111/j.1530-0277.1998.tb03868.x
[53] Chenoufi, N., Drenou, B., Loreal, O., Pigeon, C., Brissot, P. and Lescoat, G. (1998) Antiproliferative effect of deferiprone on the Hep G2 cell line. Biochemical Pharmacology, 56, 431-437. doi:10.1016/S0006-2952(98)00071-9
[54] Cragg, L., Hebbel, R.P., Miller, W., Solovey, A., Selby, S. and Enright, H. (1998) The iron chelator L1 potentiates oxidative DNA damage in iron-loaded liver cells. Blood, 92, 632-638.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.