Web Portal for Photonic Technologies Using Grid Infrastructures


The modeling of physical processes is an integral part of scientific and technical research. In this area, the Extendible C++ Application in Quantum Technologies (ECAQT) package provides the numerical simulations and modeling of complex quantum systems in the presence of decoherence with wide applications in photonics. It allows creating models of interacting complex systems and simulates their time evolution with a number of available time-evolution drivers. Physical simulations require massive amounts of calculations are often executed on distributed computing infrastructures. It is often difficult for non expert users to use such computational infrastructures or even to use advanced libraries over the infrastructures, because they often require being familiar with middleware and tools, parallel programming techniques and packages. The Parallel Grid Run-time and Application Development Environment (P-RADE) Grid Portal is a Grid portal solution that allows users to manage the whole life-cycle for executing a parallel application on the computing Grid infrastructures. The article describes the functionality and the structure of the web portal based on ECAQT package.

Share and Cite:

H. Astsatryan, T. Gevorgyan and A. Shahinyan, "Web Portal for Photonic Technologies Using Grid Infrastructures," Journal of Software Engineering and Applications, Vol. 5 No. 11, 2012, pp. 864-869. doi: 10.4236/jsea.2012.511100.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. H. Adamyan, N. H. Adamyan, N. T. Gevorgyan, T. V. Gevorgyan and G. Yu. Kryuchkyan, “Software for Numerical Simulations in the Field of Quantum Technologies Based on Parallel Programming,” Physics of Particles and Nuclei Letters, Vol. 5, No. 3, 2008, pp. 161-163. doi:10.1134/S1547477108030047
[2] T. V. Gevorgyan, A. R. Shahinyan and G. Yu. Kryuchkyan, “Extendible C++ Application in Photonic Technologies Based on Parallel Computing,” CSIT Proceedings, Yerevan, 27 September-2 October 2009, p. 367.
[3] N. Gisin and I. C. Percival, “The Quantum-State Diffusion Model Applied to Open Systems”, Journal of Physics A: Mathematical and General, Vol. 25, No. 21, 1992, p. 5677. doi:10.1088/0305-4470/25/21/023
[4] S. T. Gevorkyan, G. Yu. Kryuchkyan and N. T. Muradyan, “Quantum Fluctuations in Unstable Dissipative Systems,” Physical Review A, Vol. 61, No. 4, 2000, 10 p. doi:10.1103/PhysRevA.61.043805
[5] H. H. Adamyan, S. B. Manvelyan and G. Yu. Kryuchkyan, “Chaos in a Double Driven Dissipative Nonlinear Oscillator”, Physical Review E, Vol. 64, No. 4, 2001, 10 p. doi:10.1103/PhysRevE.64.046219
[6] G. Yu. Kryuchkyan and S. B. Manvelyan, “Quantum Dissipative Chaos in the Statistics of Excitation Numbers”, Physical Review Letters, Vol. 88, No. 9, 2002, 4 p. doi:10.1103/PhysRevLett.88.094101
[7] G. Yu. Kryuchkyan and S. B. Manvelyan, “Sub-Poissonian Statistics in Order-to-Chaos Transition”, Physical Review A, Vol. 68, No. 1, 2003, 9 p. doi:10.1103/PhysRevA.68.013823
[8] T. V. Gevorgyan, S. B. Manvelyan, A. R. Shahinyan and G. Yu. Kryuchkyan, “Dissipative Chaos in Quantum Distributions,” In: G. Kryuchkyan, G. Gurzadyan and A. Papoyan, Eds., Modern Optics and Photonics: Atoms and Structured Media, World Scientific, London, 2010, pp. 60-77. doi:10.1142/9789814313278_0005
[9] H. H. Adamyan, S. B. Manvelyan and G. Yu. Kryuchkyan, “Stochastic Resonance in Quantum Trajectories for an Anharmonic Oscillator,” Physical Review A, Vol. 63, No. 2, 2001, 9 p. doi:10.1103/PhysRevA.63.022102
[10] T. V. Gevorgyan, A. R. Shahinyan and G. Yu. Kryuchkyan, “Quantum Interference and Sub-Poissonian Statistics for Time-Modulated Driven Dissipative Nonlinear Oscillators,” Physical Review A, Vol. 79, No. 5, 2009, 9 p. doi:10.1103/PhysRevA.79.053828
[11] T. V. Gevorgyan, A. R. Shahinyan and G. Yu. Kryuchkyan, “Generation of Fock States and Qubits in Periodically Pulsed Nonlinear Oscillators,” Physical Review A, Vol. 85, No. 5, 2012, 7 p. doi:10.1103/PhysRevA.85.053802
[12] H. H. Adamyan, N. H. Adamyan, S. B. Manvelyan and G. Yu. Kryuchkyan, “Quadrature Entanglement and Photon-Number Correlations Accompanied by Phase-Locking,” Physical Review A, Vol. 73, No. 3, 2006, 9 p.
[13] H. H. Adamyan and G. Yu. Kryuchkyan, “Time-Modulated Type-II Optical Parametric Oscillator: Quantum Dynamics and Strong Einstein-Podolsky-Rosen Entanglement,” Physical Review A, Vol. 74, No. 2, 2006, 12 p. doi:10.1103/PhysRevA.74.023810
[14] N. H. Adamyan, H. H. Adamyan and G. Yu. Kryuchkyan, “Time-Domain Squeezing and Quantum Distributions in the Pulsed Regime,” Physical Review A, Vol. 77, No. 2, 2008, 10 p. doi:10.1103/PhysRevA.77.023820
[15] G. Yu. Kryuchkyan and L. A. Manukyan, “Entangled Light in Transition through the Generation Threshold,” Physical Review A, Vol. 69, No. 1, 2004, 7 p. doi:10.1103/PhysRevA.69.013813
[16] D. A. Antonosyan, T. V. Gevorgyan and G. Yu. Kryuchkyan, “Three-Photon States in Nonlinear Crystal Superlattices,” Physical Review A, Vol. 83, No. 4, 2011, 13 p. doi:10.1103/PhysRevA.83.043807
[17] G. Yu. Kryuchkyan and N. T. Muradyan, “Toward the Multiphoton Parametric Oscillators,” Physical Letters A, Vol. 286, No. 2-3, 2001, pp. 113-120. doi:10.1016/S0375-9601(00)00801-X
[18] G. Yu. Kryuchkyan, L. A. Manukyan, N. T. Muradyan, “Three-Photon Light in Repeated Photon Splitting,” Optics Communication, Vol. 190, No. 1-6, 2001, pp. 245-259.doi:10.1016/S0030-4018(01)01095-1
[19] M. Jakob and G. Yu. Kryuchkyan, “Squeezing in the Resonance Fluorescence of a Bichromatically Driven Two-Level Atom,” Physical Review A, Vol. 58, No. 1, 1998, pp. 767-770. doi:10.1103/PhysRevA.58.767
[20] G. Yu. Kryuchkyan, M. Jakob and A. S. Sargsian, “Resonance Fluorescence in a Bichromatic Field as a Source of Nonclassical Light,” Physical Review A, Vol. 57, No. 3, 1998, pp. 2091-2095. doi:10.1103/PhysRevA.57.2091
[21] M. Jakob and G. Yu. Kryuchkyan, “Autler-Townes Effect with Mono- and Bichromatic—Pump Fields: Reservoir Effects and Floquet-State Treatment,” Physical Review A, Vol. 57, No. 2, 1998, pp. 1355-1366. doi:10.1103/PhysRevA.57.1355
[22] K. V. Kheruntsyan, G. Yu. Kryuchkyan, N. T. Mouradyan, K. G. Petrossian, “Controlling Instability and Squeezing from a Cascaded Frequency Doubler,” Physical Review A, Vol. 57, No. 1, 1998, pp. 535-547. doi:10.1103/PhysRevA.57.535
[23] M. Jakob and G. Yu. Kryuchkyan, “Photon Correlation in an Ion-Trap System,” Physical Review A, Vol. 59, No. 3, 1999, pp. 2111-2119. doi:10.1103/PhysRevA.59.2111
[24] R. Schack and T. A. Brunn, “A C++ Library Using Quantum Trajectories to Solve Quantum Master Equations,” Computer Physics Communications, Vol. 102, No. 1-3, 1997, pp. 210-228. doi:10.1016/S0010-4655(97)00019-2
[25] S. M. Tan, “A Computational Toolbox for Quantum and Atomic Optics,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 1, No. 4, 1999, p. 424. doi:10.1088/1464-4266/1/4/312
[26] A. Vukics and H. Ritsch, “C++ QED: An Object-Oriented Framework for Wave-Function Simulations of Cavity QED Systems,” Physics and Astronomy, Vol. 44, No. 3, 2007, pp. 585-599. doi:10.1140/epjd/e2007-00210-x
[27] Zs. Nmeth, G. Dzsa, R. Lovas and P. Kacsuk, “The P-Grade Grid Portal,” Lecture Notes in Computer Science, Springer, 2004.
[28] H. Astsatryan, Yu. Shoukouryan and V. Sahakyan, “Grid Activities in Armenia,” Proceedings of the International Conference Parallel Computing Technologies (PAVT’2009), Novgorod, 2009, pp. 465-469, ISBN: 978-5-696-03854-4.
[29] D. Kranzlmüller, J. M. de Lucas and P. Oster, “The European Grid Initiative (EGI),” Remote Instrumentation and Virtual Laboratories, Springer, 2010, pp. 61-66. http://rd.springer.com/article/10.1007/s10723-011-9185-0
[30] H. Astsatryan, V. Sahakyan, Y. Shoukourian, M. Dayde and A. Hurault, “Enabling Large-Scale Linear Systems of Equations on Hybrid HPC Infrastructures,” Advances in Intelligent and Soft Computing, Vol. 150, 2012, pp. 239-245, ISBN: 978-3-642-28664-3.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.