Effects of micro-environmental conditions and forest disturbance on the establishment of two Andean palms in Ecuador


The wax palm (Ceroxylon echinulatum) and palm heart (Prestoea acuminata) are key elements in Andean natural forests. This ecosystem is threatened by deforestation and habitat degradation, thus, it is vital to explore the impact of anthropogenic activities on the ecological structure and preferences of these species in order to develop proper conservation strategies. Fifty-seven 400 m2 plots were established in two forest areas, a disturbed forest (n = 30 plots) and an undisturbed forest (n = 27 plots) in the Ecuadorean Andes. Nine micro-environmental variables and the number of individuals of C. echinulatum and P. acuminata in five size classes were recorded in each plot. Logistic regression models helped identify environmental variables that influence the establishment of the species. Results showed that different micro-environmental variables determined the presence of different size classes. Both species were benefitted by the environmental conditions of the disturbed forest. Light availability was important for the establishment of both species, especially for the canopy species (C. echinulatum). This palm was negatively affected by the variable “fallen wood”, while P. acuminata was negatively affected mainly by the steepness of the terrain. The environmental variables for the successful establishment of the studied species that were identified by this study provide clues for the sustainable management of C. echinulatum and P. acuminata in Andean forests.

Share and Cite:

Rodríguez-Paredes, D. , Montúfar-Galárraga, R. and Meilby, H. (2012) Effects of micro-environmental conditions and forest disturbance on the establishment of two Andean palms in Ecuador. Open Journal of Ecology, 2, 233-243. doi: 10.4236/oje.2012.24027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Brokamp, G., Valderrama, N., Mittelbach, M., Grández, C., Barfod, A. and Weigend, M. (2011) Trade in palm products in north-western South America. The Botanical Review, 77, 571-606. doi:10.1007/s12229-011-9087-7
[2] Dransfield, J., Uhl, N., Asmussen, C., Baker, W., Harley M. and Lewis, C. (2008) Genera palmarum: The evolution and classification of palms. Kew Publishing, Royal Botanic Gardens, Kew.
[3] Galetti, M. and Fernández, J. (1998) Palm heart harvesting in the Brazilian Atlantic Forest: Changes in industry structure and the illegal trade. Journal of Applied Ecology, 35, 294-301.
[4] Steffan-Dewenter, I. and Tscharntke, T. (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia, 121, 432-440. doi:10.1007/s004420050949
[5] Zuidema, P. and Boot, R. (2000) Demographic constraints to sustainable palm heart extraction from a sub-canopy palm in Bolivia. In: P. Zuidema, Ed., Demography of exploited tree species in the Bolivian Amazon, Riberalta: Promab, Chapter 3, Riberalta.
[6] Laurance, W., Ferreira, L., Rankin-De Merona, J., Laurance, S., Hutchings, R. and Lovejoy, T. (1998) Effects of forest fragmentation on recruitment patterns in Amazonian tree communities. Conservation Biology, 12, 460-464. doi:10.1046/j.1523-1739.1998.97175.x
[7] Williams-Linera, G. (1990) Vegetation structure and environmental conditions of the forest edges in Panamá. Journal of Ecology, 78, 356-373. doi:10.2307/2261117
[8] Pintaud, J., Galeano, G., Balslev, H., Bernal, R., Bor- chsenius, F., Ferreira, E., De Granville, J., Mejía, K., Millán, B., Moraes, M., Noblick, L., Stauffer, F. and Kahn, F. (2008) Las palmeras de América del Sur: Diversidad, distribución e historia evolutiva. Revista Peruana de Biología, 15, 7-29.
[9] Borchsenius, F. and Moraes, M. (2006) Diversidad y usos de las palmeras Andinas (Arecaceae). In: Moraes, M., et al. Eds., Botánica económica de los Andes centrales. Universidad Mayor San Andrés, La Paz, Bolivia.
[10] Bonilla, D. and Feil, J. (1995) Production of ramets and germination of Prestoea trichoclada (Arecaceae): A source of palm heart in Ecuador. Principes, 39, 210-214.
[11] Borchsenius, F., Borgtoft-Pedersen, H. and Balslev, H. (1998) Manual to the palms of Ecuador. AAU Reports 37, University of Aarhus, Aarhus.
[12] De La Torre, L., Navarrete, H., Muriel, P., Macia, M. and Balslev, H. (2008) Enciclopedia de las plantas útiles del Ecuador. Herbario QCA de la Escuela de ciencia biológicas de la Pontificia Universidad Católica del Ecuador y Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus, Quito and Aarhus.
[13] Pedersen, H. and Balslev, H. (1992) The economic botany of Ecuadorean palms. In: Plotkin, M. and Famolare, L., Eds., Sustainable Harvest and marketing of Rain Forests Products, Islands Press, Washington DC, 173-191.
[14] Kissling, D.W., Baker, W.J., Balslev, H., Barfod, A.S., Borchsenius, F., Dransfield, J., Govaerts, R. and Svenning, J. (2011) Quaternary and pre-quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 21, 909-921.
[15] Svenning, J. (2001) On the role of micro-environmental heterogeneity in the ecology and diversification of neotropical Rain-forest palms (Arecaceae). Botanical Review, 67, 1-53. doi:10.1007/BF02857848
[16] Skov, F. and Borchsenius, F. (1997). Predicting plant species distribution patterns using simple climatic parameters: A case study of Ecuadorean palms. Ecography, 20, 347-355. doi:10.1111/j.1600-0587.1997.tb00379.x
[17] Henderson, A. (1995) The palms of the Amazon. Oxford University Press, Oxford. doi:10.1126/science.165.3889.131
[18] Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137. doi:10.1126/science.165.3889.131
[19] Montúfar, R. and Pintaud, J. (2006) Variation in species composition, abundance and microhabitat preferences among western Amazonian terra firme palm communities. Botanical Journal of the Linnean Society, 151, 127-140. doi:10.1111/j.1095-8339.2006.00528.x
[20] Clark, D., Clark, D., Sandoval, M. and Castro M. (1995) Edaphic and human effects on landscape-scale distributions of tropical rain forest palms. Ecology, 76, 2581-2594. doi:10.2307/2265829
[21] Svenning, J. (1999) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology, 87, 55-65. doi:10.1046/j.1365-2745.1999.00329.x
[22] Vormisto, J., Hanna, T. and Jari, O. (2004) Palm distribution patterns in Amazonian rainforests: What is the role of topographic variation. Journal of Vegetation Science, 15, 485-494. doi:10.1111/j.1654-1103.2004.tb02287.x
[23] Karubian, J., Sork, V. L., Roorda, T., Duraes, R. and Smith, T. (2010) Destination-based seed dispersal homogenizes genetic structure of a tropical palm. Molecular Ecology, 19, 1745-1753. doi:10.1111/j.1365-294X.2010.04600.x
[24] Souza, A. and Martins, F. (2004) Microsite specialization and spatial distribution of Geonoma brevispatha a clonal palm in south-eastern Brazil. Ecological Research, 19, 521-532. doi:10.1111/j.1440-1703.2004.00670.x
[25] Svenning, J. (2000). Small canopy gaps influence plant distributions in the rain forest understory. Biotropica, 32, 252-261.
[26] Bubb, P., May, I., Miles, L. and Sayer, J. (2004) Cloud forest. http://www.unep-wcmc.org/resources/publications/UNEP_WCMC_bio_series/20.htm
[27] Cuesta, F., Peralvo, M. and Valarezo, N. (2009) Los bosques montanos de los Andes Tropicales. Una evaluación regional de su estado de conservación y de su vulnerabilidad a efectos del cambio climático. Programa Regional ECO-BONA-Intercooperation, Imprenta Mariscal, Quito.
[28] Josse, C., Cuesta, F., Navarro, G., Barrena, V., Cabrera, E., Chacón-Moreno, E., Ferreira, W., Peralvo, M., Saito, J. and Tovar, A. (2009) Ecosistemas de los Andes del Norte y Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, programa Regional ecobona-intercooperation, codesan-proyecto páramo andino, programa bio-andes, ecociencia, nature serve, iavh, lta-unalm, icae-ula, cdc-unalm, rumbol srl. Lima.
[29] Montúfar, R., Anthelme, F., Pintaud, J. and Balslev, H. (2011) Disturbance and resilience in tropical American palm populations and communities. Botanical Review, 77, 426-461. doi:10.1007/s12229-011-9085-9
[30] Kapos, V. (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. Journal of Tropical Ecology, 5, 173-185. doi:10.1017/S0266467400003448
[31] Laurance, W., Ferreira, L., Rankin-De Merona, J. and Laurence, S. (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology, 79, 2032-2040. doi:10.1890/0012-9658(1998)079[2032:RFFATD]2.0.CO;2
[32] Tomlinson, P. (1990) The structural biology of palms. Oxford University Press, New York.
[33] Anthelme, F., Lincango, J., Gully, C., Duarte, N. and Montúfar, R. (2011) How anthropogenic disturbances affect the resilience of a keystone palm tree in the threatened Andean cloud forest. Biological Conservation, 144, 1059-1067. doi:10.1016/j.biocon.2010.12.025
[34] Guevara, M., Fuentes-Pozo, P., Josse, C. and Pe?afiel, M. (2001) Tres décadas de cambios en el uso de la tierra en el área de Nanegal. In: Rhoades, R.E., Ed., Tendiendo puentes entre los paisajes humanos y naturales. La investigación participativa y el desarrollo ecológico en una frontera agrícola andina, Abya Yala, Quito. 416.
[35] Jensen, A. and Meilby, H. (2008) Does commercialization of non-timber forest product reduce ecological impact. A Case Study of Critically Endangered Aquilaria crassna in Lao PDR. Oryx, 42, 214-221. doi:10.1017/S0030605308007825
[36] Ca?adas-Cruz, L. (1983) El mapa bioclimático y ecológico del Ecuador. Banco Central del Ecuador. Quito, Ecuador.
[37] Knudsen, H. (1995) Demography, palm-heart extractivism, and reproductive biology of P. acuminata (Arecaceae) M.Sc. Thesis, Department of Systematic Botany, University of Aarhus, Aarhus.
[38] Sanín, M. J. and Galeano, G. (2011). A revision of the andean wax palm, Ceroxylon (Arecaceae). Phytotaxa, 34, 1-64.
[39] Henderson, A., Galeano, G. and Bernal, R. (1995) Field guide to the palms of the Americas. Princenton University Press, New Jersey.
[40] Daws, M., Pearson, T., Burslem, D., Mullins, C. and Dalling, J. (2005) Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panamá. Plant Ecology, 179, 93-105. doi:10.1007/s11258-004-5801-4
[41] Brown, N., Jennings, S., Wheeler, P. and Nabe-Nielsen, J. (2000) An improved method for the rapid assessment of the forest understorey light environments. Journal of Applied Ecology, 37, 1044-1053. doi:10.1046/j.1365-2664.2000.00573.x
[42] Svenning, J. (1998) The effect of land-use on the local distribution of palm species in an Andean rain forest fragment in northwestern Ecuador. Biodiversity and Conservation, 7, 1529-1537. doi:10.1023/A:1008831600795
[43] Madri?án, S. and Schultes, R. (1995) Colombia’s national tree: The wax palm Ceroxylon quindiuense and its relatives. Elaeis, 7, 35-56.
[44] Molofsky, J. and Augspurger, C. (1992) The effects of leaf litter on early seedling establishment in a tropical forest. Ecology, 73, 68-77. doi:10.2307/1938721
[45] Vázquez-Yanes, C., Orozco-Segovia, A., Rincón, E., Sánchez-Coronado, M., Huante, P., Toledo, J. and Barradas, V. (1990) Light beneath the litter in a tropical forest: Effect on seed germination. Ecology, 71, 1952-1958. doi:10.2307/1937603
[46] Cintra, R. (1997) Leaf litter effects on seed and seedling predation of the palm Astrocaryum murumuru and the legume tree Dypteryx micrantha in Amazonian forest. Journal of Tropical Ecology, 13, 709-725. doi:10.1017/S0266467400010889
[47] Rudas, C. (1998) Evaluación del estado actual de una población de la palma de cera, Ceroxylon sasaimae Galeano: Aportes a su historia de vida y estudio demográfico. BSc. Thesis, Universidad de Los Andes, Bogotá.
[48] Didham, R. and Lawton, J. (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forests fragments. Biotropica, 31, 17-30.
[49] Paredes, T. (1995) Primeros estudios biológicos de la palma de ramos (Ceroxylon echinulatum) presente en Cosanga (provincia del Napo) entre Agosto de 1991 y Octubre de 1992. Tesis de Licenciatura, Departamento de Biología, Pontificia Universidad Católica del Ecuador, Quito.
[50] Schupp, E. (1992) The janzen-connell model for tropical tree diversity: Population implications and the importance of spatial scale. The American Naturalist, 140, 526-530. doi:10.1086/285426
[51] Kahn, F. (1986) Life forms of Amazonian palms in relation to forest structure and dynamics. Biotropica, 18, 214-218. doi:10.2307/2388487
[52] Svenning, J. (1999) Recruitment of tall arborescent palms in the Yasuní National Park, Amazonian Ecuador: Are large treefall gaps important. Journal of Tropical Ecology, 15, 355-366. doi:10.1017/S0266467499000875
[53] Svenning, J. (2000) Growth strategies of clonal palms (Arecaceae) in a neotropical rainforest, Yasuní, Ecuador. Australian Journal of Botany, 48, 167-178. doi:10.1071/BT98048
[54] Galeano, G. (1995) Novedades del género Ceroxylon (Palmae). Caldasia, 17, 395-408.
[55] Svenning, J. (2001) Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest (Maquipucuna, Ecuador). Journal of Tropical Ecology, 17, 97-113. doi:10.1017/S0266467401001067
[56] Henderson, A. (2002) Evolution and ecology of palms. The New York Botanical Garden press, New York.
[57] Lugo, A. and Rivera, C. (1987) Leaf production, growth rate, and age of the palm Prestoea Montana in the Luquillo experimental forest, Puerto Rico. Journal of Tropical Ecology, 3, 151-161. doi:10.1017/S0266467400001905
[58] Vergara, L. (2002) Demografía de ceroxylon alpinum en bosques relictuales del Valle de Cocora, Salento (Quindio). BSc. Thesis, Departamento de Biología, Universidad Nacional de Colombia, Bogotá.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.