Effects of Myrothecium verrucaria on Ultrastructural Integrity of Kudzu (Pueraria montana var. lobata) and Phytotoxin Implications


The fungus Myrothecium verrucaria (Alb. & Schwein.) (MV), originally isolated from diseased sicklepod (Senna obtusifolia L.), has bioherbicial activity against kudzu and several other weeds when applied with low concentrations of the surfactant Silwet L-77. To more fully understand the initial events of MV infection or disease progression, and to improve knowledge related to its mechanism of action, the effects of MV and its product (roridin A) on kudzu seedlings were examined at the ultrastructural level. Ultrastructural analysis of MV effects on kudzu seedlings revealed a rapid (~1 h after treatment) detachment of the protoplast from the cell wall and plasmodesmata appeared to be broken off and retained in the wall. These symptoms occurred well in advance of the appearance of any fungal growth structures. Some fungal growth was observed after severe tissue degeneration (24 to 48 h after treatment), but this occurred primarily at the extra-cellular location with respect to the kudzu tissues. Kudzu seedlings treated with roridin A, a trichothecene produced by the fungus, exhibited some symptoms similar to those induced by the fungus applied in spore formulations with surfactant. The overall results are the first to report the ultrastructural effects of this bioherbicide on plants and suggest that penetration of a phytotoxic substance(s) in the fungal formulation was facilitated by the surfactant, and that roridin A exerts phytotoxicity toward kudzu.

Share and Cite:

R. Hoagland, C. Boyette, K. Vaughn, N. Teaster and K. Stetina, "Effects of Myrothecium verrucaria on Ultrastructural Integrity of Kudzu (Pueraria montana var. lobata) and Phytotoxin Implications," American Journal of Plant Sciences, Vol. 3 No. 11, 2012, pp. 1513-1519. doi: 10.4236/ajps.2012.311182.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. McKee and J. L. Stephens, “Kudzu as a Farm Crop,” USDA Bulletin No. 1923, 1943, 13 p.
[2] J. H. Miller, “Testing Herbicides for Kudzu Eradication on a Piedmont Site,” Southern Journal of Applied Forestry, Vol. 9, No. 2, 1985, pp. 128-132.
[3] T. B. Harrington, L. T. Rader-Dixon and J. W. Taylor Jr., “Kudzu (Pueraria montana) Community Responses to Herbicides, Burning, and High-Density Loblolly Pine,” Weed Science, Vol. 51, No. 6, 2003, pp. 965-974. doi:10.1614/02-142
[4] R. S. C. Christiano and H. Scherm, “Quantitative Aspects of the Spread of Asian Soybean Rust in the Southeastern United States, 2005 to 2006,” Phytopathology, Vol. 97, No. 11, 2007, pp. 1428-1433. doi:10.1094/PHYTO-97-11-1428
[5] H. L. Walker and A. M. Tilley, “Myrothecium verrucaria from Sicklepod (Senna obtusifolia) as a Potential Myco-herbicide Agent,” Biological Control, Vol. 10, No. 2, 1997, pp. 104-112. doi:10.1006/bcon.1997.0559
[6] C. D. Boyette, H. L. Walker and H. K. Abbas, “Control of Kudzu with a Fungal Pathogen Derived from Myrothecium verrucaria,” US Patent No. 6,274,534, 2001.
[7] C. D. Boyette, H. L. Walker and H. K. Abbas, “Biological Control of Kudzu (Pueraria lobata) with an Isolate of Myrothecium verrucaria,” Biocontrol Science and Technology, Vol. 12, No. 1, 2002, pp. 75-82. doi:10.1080/09583150120093031
[8] R. E. Hoagland, T. S. McCallister, C. D. Boyette, M. A. Weaver and R. V. Beecham, “Myrothecium verrucaria as a Bioherbicidal Agent against Morning-Glory (Ipomoea) Species,” Allelopathy Journal, Vol. 27, No. 2, 2011, pp. 151-162.
[9] C. D. Boyette, R. E. Hoagland and H. K. Abbas, “Evaluation of the Bioherbicide Myrothecium verrucaria for Weed Control in Tomato (Lycopersicon esculentum),” Biocontrol Science and Technology, Vol. 17, No. 2, 2007, pp. 171-178. doi:10.1080/09583150600937451
[10] R. E. Hoagland, C. D. Boyette and H. K. Abbas, “Myrothecium verrucaria Isolates and Formulations as Bioherbicide Agents for Kudzu,” Biocontrol Science and Technology, Vol. 17, No. 7, 2007, pp. 721-731. doi:10.1080/09583150701527268
[11] R. E. Hoagland, “Chemical Interactions with Bioherbicides to Improve Efficacy,” Weed Technology, Vol. 10, No. 4, 1996, pp. 651-674.
[12] C. D. Boyette, K. N. Reddy and R. E. Hoagland, “Glyphosate and Bioherbicide Interaction for Controlling Kudzu (Pueraria lobata), Redvine (Brunnicia ovata), and Trumpetcreeper (Campsis radicans),” Biocontrol Science and Technology, Vol. 16, No. 10, 2006, pp. 1067-1077. doi:10.1080/09583150600828742
[13] C. D. Boyette, R. E. Hoagland, M. A. Weaver and K. N. Reddy, “Redvine (Brunnichia ovata) and Trumpetcreeper (Campsis radicans) Controlled under Field Conditions by a Synergistic Interaction of the Bioherbicide, Myrothecium verrucaria with Glyphosate,” Weed Biology and Management, Vol. 8, No. 1, 2008, pp. 39-45. doi:10.1111/j.1445-6664.2007.00272.x
[14] C. D. Boyette, R. E. Hoagland and M. A. Weaver, “Interaction of a Bioherbicide and Glyphosate for Controlling Hemp Sesbania in Glyphosate-Resistant Soybean,” Weed Biology and Management, Vol. 8, No. 1, 2008, pp. 18-24. doi:10.1111/j.1445-6664.2007.00269.x
[15] R. E. Hoagland, C. D. Boyette, M. A. Weaver and H. K. Abbas, “Research Findings and strategies to Reduce Risks of the bioherbicide, Myrothecium verrucaria,” Proceedings of 4th World Congress on Allelopathy, Charles Stuart University, New South Wales, 2005, pp. 114-121.
[16] D. L. Sudakin, “Trichothecenes in the Environment: Relevance to Human Health,” Toxicology Letters, Vol. 143, No. 2, 2003, pp. 97-107. doi:10.1016/S0378-4274(03)00116-4
[17] R. E. Hoagland, C. D. Boyette and M. A. Weaver, “Bioherbicides: Research and Risks,” Toxin Reviews, Vol. 26, No. 1, 2007, pp. 1-30.
[18] R. E. Hoagland, M. A. Weaver and C. D. Boyette, “Myrothecium Verrucaria Fungus: A Bioherbicide and Strategies to Reduce Its Non-Target Risks,” Allelopathy Journal, Vol. 19, No. 1, 2007, pp. 179-192.
[19] C. D. Boyette, M. A. Weaver, R. E. Hoagland and K. C. Stetina, “Submerged Culture of a Mycelial Formulation of a Bioherbicidal Strain of Myrothecium verrucaria with Mitigated Mycotoxin Production,” World Journal of Microbiology and Biotechnology, Vol. 24, No. 11, 2008, pp. 2721-2726. doi:10.1007/s11274-008-9759-6
[20] R. E. Hoagland, M. A. Weaver and C. D. Boyette, “ELISA Detection of Trichothecenes Produced by the Bioherbicide Myrothecium verrucaria in Cell Cultures, Extracts, and Plant Tissues,” Communications of Soil Science and Plant Analysis, Vol. 39, No. 19, 2008, pp. 3059-3075. doi:10.1080/00103620802432923
[21] G. A. Bean, B. B. Jarvis and M. B. Aboul-Nasr, “A Biological Assay for the Detection of Myrothecium spp. Produced Macrocyclic Trichothecenes,” Mycopathologia, Vol. 119, No. 3, 1992, pp. 175-180. doi:10.1007/BF00448816
[22] N. J. Alexander, S. P. McCormick and S. L. Ziegenhorn, “Phytotoxicity of Selected Trichothecenes Using Chlamydomonas reinhardtii as a Model System,” Natural Toxins, Vol. 7, No. 6, 1999, pp. 265-269. doi:10.1002/1522-7189(199911/12)7:6<265::AID-NT65>3.0.CO;2-5
[23] A. E. Desjardins, R. H. Proctor, G. Bai, S. P. McCormick, G. Shaner, G. Buechley and T. M. Hohn, “Reduced Virulence of Trichothecene-Nonproducing Mutants of Gibberella zeae in Wheat Field Tests,” Molecular Plant-Microbe Interactions, Vol. 9, No. 9, 1996, pp. 775-781. doi:10.1094/MPMI-9-0775
[24] L. J. Harris, A. E. Desjardins, R. D. Plattner, P. Nicholson, G. Butler, J. C. Young, G. Weston, R. H. Proctor and T. M. Hohn, “Possible Role of Trichothecene Mycotoxins in the Virulence of Fusarium graminearum on Maize,” Plant Disease, Vol. 83, No. 9, 1999, pp. 954-960. doi:10.1094/PDIS.1999.83.10.954
[25] R. H. Proctor, A. E. Desjardins, S. P. McCormick, R. D. Plattner, N. J. Alexander and D. W. Brown, “Genetic Analysis of the Role of Trichothecene and Fumonisin Mycotoxins in the Virulence of Fusarium,” European Journal of Plant Pathology, Vol. 108, No. 7, 2002, pp. 691-698. doi:10.1023/A:1020637832371
[26] E. Cundliffe, M. Cannon and J. Davies, “Mechanism of Inhibition of Eucaryotic Protein Synthesis by Trichothecene Fungal Toxins,” Proceedings of the National Academy of Sciences, Vol. 71, No. 1, 1974, pp. 30-34. doi:10.1073/pnas.71.1.30
[27] H. G. Cutler, S. J. Cutler and D. Matesic, “Mode of Action of Phytotoxic Fungal Metabolites,” In: F. A. Macias, J. C. G. Galindo, J. M. G. Molinillo and H. G. Culter, Eds., Allelopathy—Chemistry and Mode of Action of Allelochemicals, CRC Press, Boca Raton, 2004, pp. 252-270.
[28] P. W. Brian, A. W. Dawkins, J. F. Grove, H. G. Hemming, G. Lowe and G. L. F. Norris, “Phytotoxic Compounds Produced by Fusarium equiseti,” Journal of Experimental Botany, Vol. 12, No. 1, 1961, pp. 1-12. doi:10.1093/jxb/12.1.1
[29] J. Peltola, L. Niessen, K. F. Nielsen, B. B. Jarvis, B. Andersen, B. Salkinoja-Salonen and E. M. Moller, “Toxigenic Diversity of Two Different RAPD Groups of Stachybotrys chartarum Isolates Analyzed by Potential for Trichothecene Production and for Boar Sperm Cell Motility Inhibition,” Canadian Journal of Microbiology, Vol. 48, No. 11, 2002, pp. 1017-1029. doi:10.1139/w02-101
[30] M. A. Weaver, C. D. Boyette and R. E. Hoagland, “Bio-herbicidal Activity from Washed Spores of Myrothecium verrucaria,” World Journal of Microbiology and Bio-technology, Vol. 28, No. 5, 2012, pp. 1941-1946. doi:10.1007/s11274-011-0996-8
[31] H. H. Mollenhauer, D. E. Corrier and R. E. Droheshey, “Ultrastructural Lesions Induced by T-2 Toxin in Mice,” Journal of Submicroscopic Cytology and Pathology, Vol. 21, No. 4, 1989, pp. 611-617.
[32] R. Yaron and B. Yagen, “T-2 Toxin Effects on the Ultra-structure of Myocardial Microvasculature,” British Journal of Experimental Pathology, Vol. 67, No. 1, 1986, pp. 55-63.
[33] Y. Liu, Z. Kang and H. Buchennauer, “Ultrastructural and Immunocytochemical Studies on Effects of Barley Yellow Dwarf Virus—Infection on Fusarium Head Blight, Caused by Fusarium graminearum, in Wheat Plants,” Journal of Phytopathology, Vol. 154, No. 1, 2006, pp. 6-15. doi:10.1111/j.1439-0434.2005.01048.x
[34] Z. Kang and H. Buchenauer, “Studies on the Infection Process of Fusarium culmorum in Wheat Spikes: Degradation of Host Cell Wall Components and Localization of Trichothecene Toxins in Infected Tissue,” European Journal of Plant Pathology, Vol. 108, No. 7, 2002, pp. 653-660. doi:10.1023/A:1020627013154
[35] R. E. Hoagland, C. D. Boyette and M. A. Weaver, “Hydrolytic Enzymes Produced by a Bioherbicidal Strain of Myrothecium verrucaria,” Picogram, Vol. 73, 2007, p. 66.
[36] A. Bottalico, “Fusarium Disease of Cereals: Species Complex and Related Mycotoxin Profiles,” European Journal of Plant Pathology, Vol. 80, No. 1, 1998, pp. 8-103.
[37] D. Masuda, M. Ishida, K. Yamaguchi, I. Yamaguchi, M. Kimura and T. Nishiuchi, “Phytotoxic Effects of Tricho-thecenes on the Growth and Morphology of Arabidopsis thaliana,” Journal of Experimental Botany, Vol. 58, No. 7, 2007, pp. 1617-1626. doi:10.1093/jxb/erl298

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.