The Impact of Climate Modes on Summer Temperature and Precipitation of Darwin, Australia, 1870-2011


Monthly mean summer (DJF) temperature and precipitation from Global Historical Climate Network (GHCN-V3) for the period of 1870-2011, are analyzed to assess the role of teleconnections on climate of Darwin, Australia. Indices of El Nino-Southern Oscillation (ENSO), Antarctic Oscillation (AAO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and Pacific North American Oscillation (PNA) are extracted from monthly means and compared with climatic data of Darwin. Most of these climate modes are shown to have a strong influence on the monthly mean summer temperature and precipitation. ENSO is shown to have a positive relationship with the amount of precipitation received and a negative relationship with the temperature. Where an El Nino event produces warmer drier conditions and a La Nina event produces colder wetter conditions. The AAO is shown to cause cold and dry conditions during the positive phase and warm and wet conditions during the negative phase. The PDO is shown to cause El Nino like condition during the positive phase causing warmer, drier weather, and La Nina like conditions during the negative phase causing cooler, wetter weather. Through the analysis it is also shown that the NAO, AO, and PNA have little effect on the temperature and precipitation patterns of Darwin.

Share and Cite:

C. Hunter and J. Binyamin, "The Impact of Climate Modes on Summer Temperature and Precipitation of Darwin, Australia, 1870-2011," Atmospheric and Climate Sciences, Vol. 2 No. 4, 2012, pp. 562-567. doi: 10.4236/acs.2012.24051.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. F. Diaz, M. P. Hoerling and J. K. Eischeid, “ENSO Variability, Teleconnections and Climate Change,” International Journal of Climatology, Vol. 21, No. 15, 2001, pp. 1845-1862. doi:10.1002/joc.631
[2] R. Suppiah, “Trends in the Southern Oscillation Phenomenon and Australian Rainfall and Changes in Their Relationship,” International Journal of Climatology, Vol. 24, No. 3, 2004, pp. 269-290. doi:10.1002/joc.1001
[3] B. Meneghini, I. Simminds and I. N. Smith, “Association between Australian Rainfall and the Southern Annular Mode,” International Journal of Climatology, Vol. 27, No. 1, 2007, pp. 109-121. doi:10.1002/joc.1370
[4] I. G. Watterson, “Components of Precipitation and Temperature anomalies and the Change Associated with the Modes of the Southern Hemisphere,” International Journal of Climatology, Vol. 29, No. 6, 2009, pp. 809-827. doi:10.1002/joc.1772
[5] J. S. Risbey, “Dangerous Climate Change and Water Resources in Australia,” Regional Environmental Change, Vol. 11, Suppl. 1, 2011, pp. 190-203. doi:10.1007/s10113-010-0176-7
[6] S. Power, T. Casey, C. Follard, A. Colman and V. Mehta, “Inter-Decadal Modulation of the Impact of ENSO on Australia,” Climate Dynamics, Vol. 15, No. 5, 1999, pp. 319-324. doi:10.1007/s003820050284
[7] L. D. Rotstayn, M. A. Collier, M.R. Dix, Y. Feng, H. B. Gordon, S. P. O’Farrell, I. N. Smith and J. Syktus, “Improved simulation of Australian Climate and ENSO-Related Rainfall Variability in a Global Climate Model with an Interactive Aerosol Treatment,” International Journal of Climatology, Vol. 30, 2010, pp. 1067-1088.
[8] K. Wolter and M. S. Timlin, “El Nino/Southern Oscillation Behavior Since 1871 as Diagnosed in a Extended Multivariate ENSO Index (MEI.ext),” International Journal of Climatology, Vol. 31, No. 7, 2011, pp. 1047-1087. doi:10.1002/joc.2336
[9] K. S. Lui and J. C. Chan, “Interannual Variation of Southern Hemisphere Tropical Cyclone Activity and Seasonal Forecast of Tropical Cyclone in the Australian Region,” International Journal of Climatology, Vol. 32, No. 2, 2012, pp. 190-202. doi:10.1002/joc.2259
[10] D. Gong and S. Wang, “Definition of Antarctic Oscillation Index,” Geophysical Research Letters, Vol. 26, No. 4, 1999, pp. 459-462. doi:10.1029/1999GL900003
[11] Intergovernmental Panel on Climate Change (IPCC), “Climate Change 2007: The Physical Science Basis,” 2007.
[12] N. J. Mantua and S. R. Hare, “The Pacific Decadal Oscillation,” Journal of Oceanography, Vol. 58, No. 1, 2002, pp. 35-44. doi:10.1023/A:1015820616384
[13] S. L. Lapp, J. St. Jacques, E. M. Barrow and D. J. Sauchyn, “GCM projections for the Pacific Decadal Oscillation under Greenhouse Forcing for the Early 21st Century,” International Journal of Climatology, Vol. 32, No. 9, 2011, pp. 1423-1442. doi:10.1002/joc.2364
[14] J. W. Hurrel and H. Van Loon, “Decadal Variation in Climate Associated with the North Atlantic Oscillation,” Climate Change, Vol. 36, No. 3-4, 1997, pp. 301-326. doi:10.1023/A:1005314315270
[15] J. Marshall, Y. Kushnir, D. Battisti, P. Chang, A. Czaja, R. Dickson, J. Hurrel, M. McCartney, R. Saravanan and M. Visbeck, “North Atlantic Climate Variability: North Atlantic Climate Variability: Phenomena, Impacts and Mechanisms,” International Journal of Climatology, Vol. 21, No. 15, 2001, pp. 1863-1898. doi:10.1002/joc.693
[16] M. H. P. Ambaum, B. J. Hoskins and D. B. Stephenson, “Arctic Oscillation or North Atlantic Oscillation?” Journal of Climate, Vol. 14, No. 16, 2001, pp. 3495-3507. doi:10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2
[17] D. W. J. Thompson and J. M. Wallace, “The Arctic Oscillation Signature in the Summertime Geopotential Height and Temperature Fields,” Geophysical Research Letters, Vol. 25, No. 9, 1998, pp. 1297-1300. doi:10.1029/98GL00950
[18] I. G. Rigor, J. M. Wallace and R. L. Colony, “Response of Sea Ice to the Arctic Oscillation,” Journal of Climate, Vol. 15, No. 18, 2002, pp. 2648-2663. doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
[19] NOAA Climate Prediction Center, “Pacific/ North America (PNA),” 2012. teledoc/pna.shtml.
[20] D. J. Leather, B. Yarnal and M. A. Palecki, “The Pacific/ North American Teleconnection Patter and United States Climate. Part I: Regional Temperature and Precipitation Associations,” Journal of Climate, Vol. 4, No. 5, 1991, pp. 517-528. doi:10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2
[21] T. J. Crowley, “North Atlantic Deep Water Cools the Southern Hemisphere,” Paleoceanography, Vol. 7, No. 4, 1992, pp. 489-497. doi:10.1029/92PA01058

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.