The Role of Heat Shock Proteins in Mammary Neoplasms: A Brief Review


Research into heat shock proteins (HSPs) for the clinical management of tumours has intensified as new evidence shows they can be used as biomarkers in carcinogenesis and are related to poor prognosis in some cancer types. Members of small HSP, HSP70 and HSP90 families have been studied extensively in breast cancer. This article reviews current understanding of the role of HSP and HSF-1 (Heat shock factor 1) expression in human breast cancer and looks at its potential diagnostic, prognostic and therapeutic value. The exciting progress that has been made using HSP 90 inhibitors in breast cancer treatment is examined and the results of preliminary studies on the expression of stress proteins in the animal model canine mammary tumours are also presented.

Share and Cite:

L. Della Salda and M. Romanucci, "The Role of Heat Shock Proteins in Mammary Neoplasms: A Brief Review," Journal of Cancer Therapy, Vol. 3 No. 5A, 2012, pp. 755-767. doi: 10.4236/jct.2012.325095.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. J. Welch, “Mammalian Stress Response: Cell Physiology, Structure/Function of Stress Proteins, and Implications for Medicine and Disease,” Physiological Reviews, Vol. 72, No. 4, 1992, pp. 1063-1081.
[2] H. H. Kampinga, J. Hageman, M. J. Vos, H. Kubota, R. M. Tanguay, E. A. Bruford, M. E. Cheetham, B. Chen and L. E. Hightower, “Guidelines for the Nomenclature of the Human Heat Shock Proteins,” Cell Stress & Chaperones, Vol. 14, No. 1, 2009, pp. 105-111. doi:10.1007/s12192-008-0068-7
[3] D. Whitley, S. P. Goldberg and W. D. Jordan, “Heat Shock Proteins: A Review of the Molecular Chaperones,” Journal of Vascular Surgery, Vol. 29, No. 4, 1999, pp. 748-751. doi:10.1016/S0741-5214(99)70329-0
[4] K. Helmbrecht, E. Zeise and L. Reinsing, “Chaperones in Cell Cycle Regulation and Mitogenic Signal Transduction: A Review,” Cell Proliferation, Vol. 33, No. 6, 2000, pp. 341-365. doi:10.1046/j.1365-2184.2000.00189.x
[5] H. M. Beere, “Death versus Survival: Functional Interaction between the Apoptotic and Stress-Inducible Heat Shock Protein Pathways,” Journal of Clinical Investigation, Vol. 115, No. 10, 2005, pp. 2633-2639. doi:10.1172/JCI26471
[6] M. A. Bausero, D. T. Page, E. Osinaga and A. Asea, “Surface Expression of HSP 25 and HSP72 Differentially Regulates Tumor Growth and Metastasis,” Tumour Biology, Vol. 25, No. 5-6, 2004, pp. 243-251. doi:10.1159/000081387
[7] K. Laudanski and D. Wyczechowska, “The Distinctive Role of Small Heat Shock Proteins in Oncogenesis,” Archivum Immunologiae et Therapiae Experimentalis (Warsz), Vol. 54, No. 2, 2006, pp. 103-111. doi:10.1007/s00005-006-0013-3
[8] C. Soti and P. Csermely, “Molecular Chaperones in the Etiology and Therapy of Cancer,” Pathology Oncology Research, Vol. 4, No. 4, 1998, pp. 316-321. doi:10.1007/BF02905225
[9] S. E. Conroy and D. S. Latchman, “Do Heat Shock Proteins Have a Role in Breast Cancer?” British Journal of Cancer, Vol. 74, No. 5, 1996, pp. 717-721. doi:10.1038/bjc.1996.427
[10] D. R. Ciocca and S. K. Calderwood, “Heat Shock Proteins in Cancer: Diagnostic, Prognostic, Predictive, and Treatment Implications,” Cell Stress & Chaperones, Vol. 10, No. 2, 2005, pp. 86-103. doi:10.1379/CSC-99r.1
[11] R. Kumaraguruparan, D. Karunagaran, C. Balachandran, B. M. Manohar and S. Nagini, “Of Human and Canines: a Comparative Evaluation of Heat Shock and Apoptosis-Associated Proteins in Mammary Tumours,” Clinica Chimica Acta, Vol. 365, No. 1-2, 2006, pp. 168-176. doi:10.1016/j.cca.2005.08.018
[12] M. Romanucci, A. Marinelli, G. Sarli and L. D. Salda, “Heat Shock Proteins Expression in Canine Malignant Mammary Tumours,” BMC Cancer, Vol. 6, 2006, p. 171. doi:10.1186/1471-2407-6-171
[13] E. Antuofermo, M. A. Miller, S. Pirino, J. Xie, S. Badve and S. I. Mohammed, “Spontaneous Mammary Intraepithelial Lesions in Dogs. A Model of Breast Cancer,” Cancer Epidemiology, Biomarkers & Prevention, Vol. 16, No. 11, 2007, pp. 2247-2256. doi:10.1158/1055-9965.EPI-06-0932
[14] M. Romanucci, T. Bastow and L. D. Salda, “Heat Shock Proteins in Animal Neoplasms and Human Tumours—A Comparison,” Cell Stress & Chaperones, Vol. 13, No. 3, 2008, pp. 253-262. doi:10.1007/s12192-008-0030-8
[15] R. Bagatell and L. Whitesell, “Altered HSP90 Function in Cancer: A Unique Therapeutic Opportunity,” Molecular Cancer Therapeutics, Vol. 3, No. 8, 2004, pp. 1021-1030.
[16] J. Nylandsted, K. Brand and M. Jaattela, “Heat Shock Protein 70 Is Required for the Survival of Cancer Cells,” Annals of the New York Academy of Sciences, Vol. 926, 2000, pp. 122-125. doi:10.1111/j.1749-6632.2000.tb05605.x
[17] J. Buchner, “HSP90 & Co.—A Holding for Folding,” Trends in Biochemical Sciences, Vol. 24, No. 4, 1999, pp. 136-141. doi:10.1016/S0968-0004(99)01373-0
[18] R. Zhao, M. Davey, Y. C. Hsu, P. Kaplanek, A. Tong, A. B. Parsons, N. Krogan, G. Cagney, D. Mai, J. Greenblatt, C. Boone, A. Emili and W. A. Houry, “Navigating the Chaperone Network: An Integrative Map of Physical and Genetic Interactions Mediated by the HSP90 Chaperone,” Cell, Vol. 120, No. 5, 2005, pp. 715-727. doi:10.1016/j.cell.2004.12.024
[19] A. J. McClellan, Y. Xia, A. M. Deutschbauer, R. W. Davis, M. Gerstein and J. Frydman, “Diverse Cellular Functions of the HSP90 Molecular Chaperone Uncovered Using Systems Approaches,” Cell, Vol. 131, No. 1, 2007, pp. 121-135. doi:10.1016/j.cell.2007.07.036
[20] M. Yano, Z. Naito, M. Yokoyama, Y. Shiraki, T. Ishiwata, M. Inokuchi and G. Asano, “Expression of HSP90 and Cyclin D1 in Human Breast Cancer,” Cancer Letters, Vol. 137, No. 1, 1999, pp. 45-51. doi:10.1016/S0304-3835(98)00338-3
[21] J. Beliakoff and L. Whitesell, “HSP90: An Emerging Target for Breast Cancer Therapy,” Anticancer Drugs Vol. 15, No. 7, 2004, pp. 651-662. doi:10.1097/
[22] K. Nadeau, A. Das and C. T. Walsh, “HSP90 Chaperonins Possess ATPase Activity and Bind Heat Shock Transcription Factors and Peptidyl Prolyl Isomerases,” Journal of Biological Chemistry, Vol. 268, No. 2, 1993, pp. 1479-1487.
[23] S. Tsutsumi and L. Neckers, “Extracellular Heat Shock Protein 90: A Role for a Molecular Chaperone in Cell Motility and Cancer Metastasis,” Cancer Science, Vol. 98, No. 10, 2007, pp. 1536-1539. doi:10.1111/j.1349-7006.2007.00561.x
[24] J. C. Young, I. Moarefi and F. U. Hartl, “HSP90: A Specialized But Essential Protein-Folding Tool,” Journal of Cell Biology, Vol. 154, No. 2, 2001, pp. 267-273. doi:10.1083/jcb.200104079
[25] D. R. Ciocca, F. E. Gago, M. A. Fanelli and S. K. Calderwood, “Co-Expression of Steroid Receptors (Estrogen Receptor Alpha and/or Progesterone Receptors) and Her-2/Neu: Clinical Implications,” Journal of Steroid Biochemistry and Molecular Biology, Vol. 102, No. 1-5, 2006, pp. 32-40.
[26] M. A. Fanelli, M. Montt-Guevara, A. M. Diblasi, F. E. Gago, O. Tello, F. D. Cuello-Carrión, E. Callegari, M. A. Bausero and D. R. Ciocca, “P-Cadherin and Beta-Catenin Are Useful Prognostic Markers in Breast Cancer Patients; Beta-Catenin Interacts with Heat Shock Protein HSP27,” Cell Stress & Chaperones, Vol. 13, No. 2, 2008, pp. 207-220. doi:10.1007/s12192-007-0007-z
[27] L. Meng, V. L. Gabai and M. Y. Sherman, “Heat-Shock Transcription Factor HSF1 Has a Critical Role in Human Epidermal Growth Factor Receptor-2-Induced Cellular Transformation and Tumorigenesis,” Oncogene, Vol. 29, No. 37, 2010, pp. 5204-5213. doi:10.1038/onc.2010.277
[28] C. Garrido, M. Brunet, C. Didelot, Y. Zermati, E. Schmitt and G. Kroemer, “Heat Shock Proteins 27 and 70. Anti-Apoptotic Proteins with Tumorigenic Properties,” Cell Cycle, Vol. 5, No. 22, 2006, pp. 2592-2601. doi:10.4161/cc.5.22.3448
[29] C. Didelot, E. Schmitt, M. Brunet, L. Maingret, A. Parcellier and C. Garrido, “Heat Shock Proteins: Endogenous Modulators of Apoptotic Cell Death,” Handbook of Experimental Pharmacology, Vol. 172, 2006, pp. 171-198. doi:10.1007/3-540-29717-0_8
[30] E. Schmitt, M. Gehrmann, M. Brunet, G. Multhoff and C. Garrido, “Intracellular and Extracellular Functions of Heat Shock Proteins: Repercussions in Cancer Therapy,” Journal of Leukocyte Biology, Vol. 81, No. 1, 2007, pp. 15-27. doi:10.1189/jlb.0306167
[31] C. Paul, F. Manero, S. Gonin, C. Kretz-Remy, S. Virot and A. P. Arrigo, “HSP27 as a Negative Regulator of Cy-Tochrome c Release,” Molecular and Cellular Biology, Vol. 22, No. 3, 2002, pp. 816-834. doi:10.1128/MCB.22.3.816-834.2002
[32] H. M. Beere, B. B. Wolf, K. Cain, D. D. Mosser, A. Mahboubi, T. Kuwana, P. Tailor, R. I. Morimoto, G. M. Cohen and D. R. Green, “Heat-Shock Protein 70 Inhibits Apoptosis by Preventing Recruitment of Procaspase-9 to the Apaf-1 Apoptosome,” Nature Cell Biology, Vol. 2, No. 8, 2000, pp. 469-475. doi:10.1038/35019501
[33] S. J. Charette, J. N. Lavoie, H. Lambert and J. Landry, “Inhibition of Daxx-Mediated Apoptosis by Heat Shock Protein 27,” Molecular and Cellular Biology, Vol. 20, No. 20, 2000, pp. 7602-7612. doi:10.1128/MCB.20.20.7602-7612.2000
[34] P. Workman, “Combinatorial Attack On Multistep Oncogenesis by Inhibiting the HSP90 Molecular Chaperone,” Cancer Letters, Vol. 206, No. 2, 2004, pp. 149-157. doi:10.1016/j.canlet.2003.08.032
[35] C. S?ti, E. Nagy, Z. Giricz, L. Vígh, P. Csermely and P. Ferdinandy, “Heat Shock Proteins as Emerging Therapeutic Targets,” British Journal of Pharmacology, Vol. 146, No. 6, 2005, pp. 769-780. doi:10.1038/sj.bjp.0706396
[36] Y. Xian Ma, S. Fan, J. Xiong, R. Q. Yuan, Q. Meng, M. Gao, I. D. Goldberg, S. A. Fuqua, R. G. Pestell and E. M. Rosen, “Role of BRCA1 in Heat Shock Response,” Oncogene, Vol. 22, No. 1, 2003, pp. 10-27. doi:10.1038/sj.onc.1206061
[37] D. R. Hurst, A. Mehta, B. P. Moore, P. A. Phadke, W. J. Meehan, M. A. Accavitti, L. A. Shevde, J. E. Hopper, Y. Xie, D. R. Welch and R. S. Samant, “Breast Cancer Metastasis Suppressor 1 (BRMS1) Is Stabilized by the HSP90 Chaperone,” Biochemical and Biophysical Research Communications, Vol. 348, No. 4, 2006, pp. 1429-1435. doi:10.1016/j.bbrc.2006.08.005
[38] A. Thor, C. Benz, D. Moore 2nd, E. Goldman, S. Edgerton, J. Landry, L. Schwartz, B. Mayall, E. Hickey and L. A. Weber, “Stress Response Protein (Srp-27) Determination in Primary Human Breast Carcinomas: Clinical, Histologic, and Prognostic Correlations,” Journal of the National Cancer Institute, Vol. 83, No. 3, 1991, pp. 170-178. doi:10.1093/jnci/83.3.170
[39] F. K. Storm, K. W. Gilchrist, T. F. Warner and D. M. Mahvi, “Distribution of HSP27 and Her-2/Neu in in Situ and Invasive Ductal Breast Carcinomas,” Annals of Surgical Oncology, Vol. 2, No. 1, 1995, pp. 43-48. doi:10.1007/BF02303701
[40] M. Yano, Z. Naito, S. Tanaka and G. Asano, “Expression and Roles of Heat Shock Proteins in Human Breast Cancer,” Japanese Journal of Cancer Research, Vol. 87, No. 9, 1996, pp. 908-915. doi:10.1111/j.1349-7006.1996.tb02119.x
[41] L. M. Vargas-Roig, M. A. Fanelli, L. A. López, F. E. Gago, O. Tello, J. C. Aznar and D. R. Ciocca, “Heat Shock Proteins and Cell Proliferation in Human Breast Cancer Biopsy Samples,” Cancer Detection and Prevention, Vol. 21, No. 5, 1997, pp. 441-451.
[42] A. Ch. Lazaris, E. B. Chatzigianni, D. Panoussopoulos, G. N. Tzimas, P. S. Davaris and B. Ch. Golematis, “Proliferating Cell Nuclear Antigen and Heat Shock Protein 70 Immunolocalization in Invasive Ductal Breast Cancer Not Otherwise Specified,” Breast Cancer Research and Treatment, Vol. 43, No. 1, 1997, pp. 43-51. doi:10.1023/A:1005706110275
[43] P. A. Townsend, E. Dublin, I. R. Hart, R. H. Kao, A. M. Hanby, R. I. Cutress, R. Poulsom, K. Ryder, D. M. Barnes and G. Packham, “BAG-I Expression in Human Breast Cancer: Interrelationships Between BAG-1 RNA, Protein, HSC70 Expression and Clinico-Pathological Data,” Journal of Pathology, Vol. 197, No. 1, 2002, pp. 51-59. doi:10.1002/path.1081
[44] S. Takahashi, E. Narimatsu, H. Asanuma, M. Okazaki, A. Okazaki, K. Hirata, M. Mori, T. Chiba, N. Sato and K. Kikuchi, “Immunohistochemical Detection of Estrogen Receptor in Invasive Human Breast Cancer: Correlation with Heat Shock Proteins, pS2 and Oncogene Products,” Oncology, Vol. 52, No. 5, 1995, pp. 371-375.
[45] P. A. O'Neill, A. M. Shaaban, C. R. West, A. Dodson, C. Jarvis, P. Moore, M. P. Davies, D. R. Sibson and C. S. Foster, “Increased Risk of Malignant Progression in Benign Proliferating Breast Lesions Defined by Expression of Heat Shock Protein 27,” British Journal of Cancer, Vol. 90, No. 1, 2004, pp. 182-188. doi:10.1038/sj.bjc.6601449
[46] D. R. Ciocca and E. H. Luque, “Immunological Evidence for the Identity between the HSP 27 Estrogen-Regulated Heat Shock Protein and the p29 Estrogen Receptor-Associated Protein in Breast and Endometrial Cancer,” Breast Cancer Research and Treatment, Vol. 20, No. 1, 1991, pp. 33-42. doi:10.1007/BF01833355
[47] M. Muňoz de Toro and E. H. Luque, “Lack of Relationship between the Expression Of HSP27 Heat Shock Estrogen Receptor-Associated Protein and Estrogen Receptor or Progesterone Receptor Status in Male Breast Carcinoma,” Journal of Steroid Biochemistry and Molecular Biology, Vol. 60, No. 5-6, 1997, pp. 277-284. doi:10.1016/S0960-0760(96)00221-X
[48] F. Thanner, M. W. Sütterlin, M. Kapp, L. Rieger, A. K. Morr, P. Kristen, J. Dietl, A. M. Gassel and T. Müller, “Heat Shock Protein 27 Is Associated with Decreased Survival in Node-Negative Breast Cancer Patients,” Anticancer Research, Vol. 25, No. 3A, 2005, pp. 1649-1653.
[49] B. Têtu, J. Brisson, J. Landry and J. Huot, “Prognostic Significance of Heat-Shock Protein-27 in Node-Positve Breast Carcinoma: An Immunohistochemical Study,” Breast Cancer Research and Treatment, Vol. 36, No. 1, 1995, pp. 93-97. doi:10.1007/BF00690189
[50] E. Ioachim, E. Tsanou, E. Briasoulis, Ch. Batsis, V. Karavasilis, A. Charchanti, N. Pavlidis and N. J. Agnantis, “Clinicopathological Study of the Expression of HSP27, pS2, Cathepsin D and Metallothionein in Primary Invasive Breast Cancer,” Breast, Vol. 12, No. 2, 2003, pp. 111-119. doi:10.1016/S0960-9776(02)00290-4
[51] S. A. Lee, D. Ndisang, C. Patel, J. H. Dennis, D. J. Faulkes, C. D’Arrigo, L. Samady, S. Farooqui-Kabir, R. J. Heads, D. S. Latchman and V. S. Budhram-Mahadeo, “Expression of the Brn-3b Transcription Factor Correlates with Expression of HSP-27 in Breast Cancer Biopsies and Is Required for Maximal Activation of the HSP-27 Promoter,” Cancer Research, Vol. 65, No. 8, 2005, pp. 3072-3080.
[52] J. H. Dennis, V. Budhram-Mahadeo and D. S. Latchman, “The Brn-3b POU Family Transcription Factor Regulates the Cellular Growth, Proliferation, and Anchorage Dependence of MCF7 Human Breast Cancer Cells,” Oncogene, Vol. 20, No. 36, 2001, pp. 4961-4971. doi:10.1038/sj.onc.1204491
[53] S. Takahashi, T. Mikami, Y. Watanabe, M. Okazaki, Y. Okazaki, A. Okazaki, T. Sato, K. Asaishi, K. Hirata, E. Narimatsu, et al., “Correlation of Heat Shock Protein 70 Expression with Estrogen Receptor Levels in Invasive Human Breast Cancer,” American Journal of Clinical Pathology, Vol. 101, No. 4, 1994, pp. 519-525.
[54] F. Thanner, M. W. Sütterlin, M. Kapp, L. Rieger, P. Kristen, J. Dietl, A. M. Gassel and T. Müller, “Heat-Shock Protein 70 as a Prognostic Marker in Node-Negative Breast Cancer,” Anticancer Research, Vol. 23, No. 2A, 2003, pp. 1057-1062.
[55] P. M. Fernandez, S. O. Tabbara, L. K. Jacobs, F. C. Manning, T. N. Tsangaris, A. M. Schwartz, K. A. Kennedy and S. R. Patierno, “Overexpression of the glucose-Regulated Stress Gene GRP78 in Malignant but Not Benign Human Breast Lesions,” Breast Cancer Research and Treatment, Vol. 59, No. 1, 2000, pp. 15-26. doi:10.1023/A:1006332011207
[56] G. Shyamala, M. Schweitzer and S. J. Ullrich, “Relationship between 90-kilodalton Heat Shock Protein, Estrogen Receptor, and Progesterone Receptor in Human Mammary Tumors,” Breast Cancer Research and Treatment, Vol. 26, No. 1, 1993, pp. 95-100. doi:10.1007/BF00682704
[57] F. Zagouri, T. N. Sergentanis, A. Nonni, C. A. Papadimitriou, N. V. Michalopoulos, P. Domeyer, G. Theodoropoulos, A. Lazaris, E. Patsouris, E. Zogafos, A. Pazaiti and G. C. Zografos, “HSP90 in the continuum of Breast Ductal Carcinogenesis: Evaluation in Precursors, Preinvasive and Ductal Carcinoma Lesions,” BMC Cancer, Vol. 10, 2010, p. 353. doi:10.1186/1471-2407-10-353
[58] S. Oesterreich, S. G. Hilsenbeck, D. R. Ciocca, D. C. Allred, G. M. Clark, G. C. Chamness, C. K. Osborne and S. A. Fuqua, “The Small Heat Shock Protein HSP27 Is Not an Independent Prognostic Marker in Axillary Lymph Node-Negative Breast Cancer Patients,” Clinical Cancer Research, Vol. 2, No. 7, 1996, pp. 1199-1206.
[59] P. Lemieux, S. Oesterreich, J. A. Lawrence, P. S. Steeg, S. G. Hilsenbeck, J. M. Harvey and S. A. Fuqua, “The Small Heat Shock Protein HSP27 Increases Invasiveness but Decreases Motility of Breast Cancer Cells,” Invasion Metastasis, Vol. 17, No. 3, 1997, pp. 113-123.
[60] J. Hurlimann, S. Gebhard and F. Gomez, “Oestrogen Receptor, Progesterone Receptor, pS2, ERD5, HSP27 and Cathepsin D in Invasive Ductal Breast Carcinomas,” Histopathology, Vol. 23, No. 3, 1993, pp. 239-248. doi:10.1111/j.1365-2559.1993.tb01196.x
[61] D. R. Ciocca, S. Green, R. M. Elledge, G. M. Clark, R. Pugh, P. Ravdin, D. Lew, S. Martino and C. K. Osborne, “Heat Shock Proteins HSP27 and HSP70: Lack of Correlation With Response To Tamoxifen And Clinical Course of Disease in Estrogen Receptor-Positive Metastatic Breast Cancer (a Southwest Oncology Group Study),” Clinical Cancer Research, Vol. 4, No. 5, 1998, pp. 1263-1266.
[62] D. R. Ciocca, G. M. Clark, A. K. Tandon, S. A. Fuqua, W. J. Welch and W. L. McGuire, “Heat Shock Protein HSP70 in Patients with Axillary Lymph Node-Negative Breast Cancer: Prognostic Implications,” Journal of the National Cancer Institute, Vol. 85, No. 7, 1993, pp. 570-574. doi:10.1093/jnci/85.7.570
[63] H. M. Kluger, D. Chelouche Lev, Y. Kluger, M. M. McCarthy, G. Kiriakova, R. L. Camp, D. L. Rimm and J. E. Price, “Using a Xenograft Model of Human Breast Cancer Metastasis to Find Genes Associated with Clinically Aggressive Disease,” Cancer Research, Vol. 65, No. 13, 2005, pp. 5578-5587. doi:10.1158/0008-5472.CAN-05-0108
[64] C. Torronteguy, A. Frasson, F. Zerwes, E. Winnikov, V. D. da Silva, A. Ménoret and C. Bonorino, “Inducible Heat Shock Protein 70 Expression as a Potential Predictive Marker of Metastasis in Breast Tumors,” Cell Stress & Chaperones, Vol. 11, No. 1, 2006, pp. 34-43. doi:10.1379/CSC-159R.1
[65] S. Liebhardt, N. Ditsch, R. Nieuwland, A. Rank, U. Jeschke, F. Von Koch, K. Friese and B. Toth, “CEA-, Her2/Neu-, BCRP- and HSP27-Positive Microparticles in Breast Cancer Patients,” Anticancer Research, Vol. 30, No. 5, 2010, pp. 1707-1712.
[66] D. Chelouche-Lev, H. M. Kluger, A. J. Berger, D. L. Rimm and J. E. Price, “AlphaB-Crystallin as a Marker of Lymph Node Involvement in Breast Carcinoma,” Cancer, Vol. 100, No. 12, 2004, pp. 2543-2548. doi:10.1002/cncr.20304
[67] S. Mestiri, N. Bouaouina, S. B. Ahmed, A. Khedhaier, B. B. Jrad, S. Remadi and L. Chouchane, “Genetic Variation in the Tumor Necrosis Factor-Alpha Promoter Region and in the Stress Protein HSP70-2: Susceptibility and Prognostic Implications in Breast Carcinoma,” Cancer, Vol. 91, No. 4, 2001, pp. 672-678. doi:10.1002/1097-0142(20010215)91:4<672::AID-CNCR1050>3.0.CO;2-J
[68] L. M. Vargas-Roig, F. E. Gago, O. Tello, J. C. Aznar and D. R. Ciocca, “Heat Shock Protein Expression and Drug Resistance in Breast Cancer Patients Treated with Induction Chemotherapy,” International Journal of Cancer, Vol. 79, No. 5, 1998, pp. 468-475. doi:10.1002/(SICI)1097-0215(19981023)79:5<468::AID-IJC4>3.0.CO;2-Z
[69] L. Chouchane, S. B. Ahmed, S. Baccouche and S. Remadi, “Polymorphism in the Tumor Necrosis Factor-Alpha Promotor Region and in the Heat Shock Protein 70 Genes Associated with Malignant Tumors,” Cancer, Vol. 80, No. 8, 1997, pp. 1489-1496. doi:10.1002/(SICI)1097-0142(19971015)80:8<1489::AID-CNCR17>3.0.CO;2-1
[70] S. E. Conroy, P. D. Sasieni, I. Fentiman and D. S. Latchman, “Autoantibodies to the 90kDa Heat Shock Protein and Poor Survival in Breast Cancer Patients,” European Journal of Cancer, Vol. 34, No. 6, 1998, pp. 942-943.
[71] E. Pick, Y. Kluger, J. M. Giltnane, C. Moeder, R. L. Camp, D. L. Rimm and H. M. Kluger, “High HSP90 expression Is Associated with Decreased Survival in Breast Cancer,” Cancer Research, Vol. 67, No. 7, 2007, pp. 2932-2937. doi:10.1158/0008-5472.CAN-06-4511
[72] S. A. Fuqua, S. Oesterreich, S. G. Hilsenbeck, D. D. Von Hoff, J. Eckardt and C. K. Osborne, “Heat Shock Proteins and Drug Resistance,” Breast Cancer Research and Treatment, Vol. 32, No. 1, 1994, pp. 67-71. doi:10.1007/BF00666207
[73] J. Gómez-Navarro, W. Arafat and J. Xiang, “Gene therapy for Carcinoma of the Breast. Pro-Apoptotic Gene Therapy,” Breast Cancer Research, Vol. 2, No. 1, 2000, pp. 32-44. doi:10.1186/bcr27
[74] E. Tiligada, “Chemotherapy: Induction of Stress Responses,” Endocrine-Related Cancer, Vol. 13, No. 1, 2006, pp. S115-24. doi:10.1677/erc.1.01272
[75] F. F. Liu, N. Miller, W. Levin, B. Zanke, B. Cooper, M. Henry, M. D. Sherar, M. Pintilie, J. W. Hunt and R. P. Hill, “The Potential Role of HSP70 as an Indicator of Response to Radiation and Hyperthermia Treatments for Recurrent Breast Cancer,” International Journal of Hyperthermia, Vol. 12, No. 2, 1996, pp. 197-208. doi:10.3109/02656739609022508
[76] K. D. Shin, M. Y. Lee, D. S. Shin, S. Lee, K. H. Son, S. Koh, Y. K. Paik, B. M. Kwon and D. C. Han, “Blocking Tumor Cell Migration and Invasion with Biphenyl Isoxazole Derivative KRIBB3, a Synthetic Molecule That Inhibits HSP27 Phosphorylation,” Journal of Biological Chemistry, Vol. 280, No. 50, 2005, pp. 41439-41448. doi:10.1074/jbc.M507209200
[77] M. A. Bausero, A. Bharti, D. T. Page, K. D. Perez, J. W. Eng, S. L. Ordonez, E. E. Asea, C. Jantschitsch, I. Kin-das-Muegge, D. Ciocca and A. Asea, “Silencing the HSP25 Gene Eliminates Migration Capability of the Highly Metastatic Murine 4T1 Breast Adenocarcinoma Cell,” Tumour Biology, Vol. 27, No. 1, 2006, pp. 17-26. doi:10.1159/000090152
[78] S. Di Cosimo and J. Baselga, “Targeted Therapies in Breast Cancer: Where Are We Now?” European Journal of Cancer, Vol. 44, No. 18, 2008, pp. 2781-2790. doi:10.1016/j.ejca.2008.09.026
[79] A. Ferrario, N. Rucker, S. Wong, M. Luna and C. J. Gomer, “Survivin, a Member of the Inhibitor of Apoptosis Family, Is Induced by Photodynamic Therapy and Is a Target for Improving Treatment Response,” Cancer Research, Vol. 67, No. 10, 2007, pp. 4989-4995. doi:10.1158/0008-5472.CAN-06-4785
[80] J. Kurebayashi, T. Otsuki, M. Kurosumi, S. Soga, S. Akinaga and H. Sonoo, “A Radicicol Derivative, KF58333, Inhibits Expression of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor, Angiogenesis and Growth of Human Breast Cancer Xenografts,” Japanese Journal of Cancer Research, Vol. 92, No. 12, 2001, pp. 1342-1351. doi:10.1111/j.1349-7006.2001.tb02159.x
[81] L. Xiao, X. Lu and D. M. Ruden, “Effectivenes of HSP90 Inhibitors as Anti-Cancer Drugs,” Mini Reviews in Medicinal Chemistry, Vol. 6, No. 10, 2006, pp. 1137-1143. doi:10.2174/138955706778560166
[82] M. G. Marcu and L. M. Neckers, “The C-Terminal Half of Heat Shock Protein 90 Represents a Second Site for Pharmacologic Intervention in Chaperone Function,” Current Cancer Drug Targets, Vol. 3, No. 5, 2003, pp. 343-347. doi:10.2174/1568009033481804
[83] M. G. Marcu, A. Chadli, I. Bouhouche, M. Catelli and L. M. Neckers, “The Heat Shock Protein 90 Antagonist Novobiocin Interacts with a Previously Unrecognized ATP-Binding Domain in the Carboxyl Terminus of the Chaperone,” Journal of Biological Chemistry, Vol. 275, No. 47, 2000, pp. 37181-37186. doi:10.1074/jbc.M003701200
[84] A. Kamal, L. Thao, J. Sensintaffar, L. Zhang, M. F. Boehm, L. C. Fritz and F. J. Burrows, “A High-Affinity Conformation of HSP90 Confers Tumour Selectivity on HSP90 inhibitors,” Nature, Vol. 425, No. 6956, 2003, pp. 407-410. doi:10.1038/nature01913
[85] L. T. Gooljarsingh, C. Fernandes, K. Yan, H. Zhang, M. Grooms, K. Johanson, R. H. Sinnamon, R. B. Kirkpatrick, J. Kerrigan, T. Lewis, M. Arnone, A. J. King, Z. Lai, R. A. Copeland and P. J. Tummino, “A Biochemical Rationale For The Anticancer Effects of HSP90 Inhibitors: Slow, Tight Binding Inhibition by Geldanamycin and Its Analogues,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 20, 2006, pp. 7625-7630. doi:10.1073/pnas.0602650103
[86] I. Pashtan, S. Tsutsumi, S. Wang, W. Xu and L. Neckers, “Targeting HSP90 Prevents Escape of Breast Cancer Cells from Tyrosine Kinase Inhibition,” Cell Cycle, Vol. 7, No. 18, 2008, pp. 2936-2941. doi:10.4161/cc.7.18.6701
[87] K. Hatake, N. Tokudome and Y. Ito, “Next Generation Molecular Targeted Agents for Breast Cancer: Focus on EGFR and VEGFR Pathways,” Breast Cancer, Vol. 14, No. 2, 2007, pp. 132-149. doi:10.2325/jbcs.977
[88] B. Zsebik, A. Citri, J. Isola, Y. Yarden, J. Sz?llosi and G. Vereb, “HSP90 Inhibitor 17-AAG Reduces ErbB2 Levels and Inhibits Proliferation of the Trastuzumab Resistant Breast Tumor Cell Line JIMT-1,” Immunology Letters, Vol. 104, No. 1-2, 2006, pp. 146-155. doi:10.1016/j.imlet.2005.11.018
[89] A. I. Robles, M. H. Wright, B. Gandhi, S. S. Feis, C. L. Hanigan, A. Wiestner and L. Varticovski, “Schedule-Dependent Synergy between the Heat Shock Protein 90 Inhibitor 17-(Dimethylaminoethylamino)-17-Demethoxygeldanamicin and Doxorubicin Restores Apoptosis to p53-Mutant Lymphoma Cell Lines,” Clinical Cancer Research, Vol. 12, No. 21, 2006, pp. 6547-6556. doi:10.1158/1078-0432.CCR-06-1178
[90] G. Kaur, D. Belotti, A. M. Burger, K. Fisher-Nielson, P. Borsotti, E. Riccardi, J. Thillainathan, M. Hollingshead, E. A. Sausville and R. Giavazzi, “Antiangiogenic Properties of 17-(Dimethylaminoethylamino)-17-Demethoxygeldanamycin: An Orally Bioavailable Heat Shock Protein 90 Modulator,” Clinical Cancer Research, Vol. 10, No. 14, 2004, pp. 4813-4821. doi:10.1158/1078-0432.CCR-03-0795
[91] D. B. Solit, A. D. Basso, A. B. Olshen, H. I. Scher and N. Rosen, “Inhibition of Heat Shock Protein 90 Function Down-Regulates Akt Kinase And Sensitizes Tumors to Taxol,” Cancer Research, Vol. 63, No. 9, 2003, pp. 2139-2144.
[92] U. Banerji, A. O’Donnell, M. Scurr, S. Pacey, S. Stapleton, Y. Asad, L. Simmons, A. Maloney, F. Raynaud, M. Campbell, M. Walton, S. Lakhani, S. Kaye, P. Workman and I. Judson, “Phase I Pharmacokinetic and Pharmacodynamic Study of 17-Allylamino, 17-Demethoxygeldanamycin in Patients with Advanced Malignancies,” Journal of Clinical Oncology, Vol. 23, No. 18, 2005, pp. 4152-4161. doi:10.1200/JCO.2005.00.612
[93] M. P. Goetz, D. Toft, J. Reid, M. Ames, B. Stensgard, S. Safgren, A. A. Adjei, J. Sloan, P. Atherton, V. Vasile, S. Salazaar, A. Adjei, G. Croghan and C. Erlichman, “Phase I Trial of 17-Allylamino-17-Demethoxygeldanamycin in Patients with Advanced Cancer,” Journal of Clinical Oncology, Vol. 23, No. 6, 2005, pp. 1078-1087. doi:10.1200/JCO.2005.09.119
[94] J. L. Grem, G. Morrison, X. D. Guo, E. Agnew, C. H. Takimoto, R. Thomas, E. Szabo, L. Grochow, F. Grollman, J. M. Hamilton, L. Neckers and R. H. Wilson, “Phase I and Pharmacologic Study of 17-(Allylamino)-17-Demethoxygeldanamycin in Adult Patients with Solid Tumors,” Journal of Clinical Oncology, Vol. 23, No. 9, 2005, pp. 1885-1893. doi:10.1200/JCO.2005.12.085
[95] R. K. Ramanathan, D. L. Trump, J. L. Eiseman, C. P. Belani, S. S. Agarwala, E. G. Zuhowski, J. Lan, D. M. Potter, S. P. Ivy, S. Ramalingam, A. M. Brufsky, M. K. Wong, S. Tutchko and M. J. Egorin, “Phase I Pharmacokinetic-Pharmacodynamic Study of 17-(Allylamino)-17-Demethoxygeldanamycin (17AAG, NSC 330507), a Novel Inhibitor of Heat Shock Protein 90, in Patients with Refractory Advanced Cancers,” Clinical Cancer Research, Vol. 11, No. 9, 2005, pp. 3385-3391. doi:10.1158/1078-0432.CCR-04-2322
[96] L. Neckers and K. Neckers, “Heat-Shock Protein 90 Inhibitors as Novel Cancer Chemotherapeutics—An Update,” Expert Opinion on Emerging Drugs, Vol. 10, No. 1, 2005, pp. 137-149. doi:10.1517/14728214.10.1.137
[97] G. S. Nowakowski, A. K. McCollum, M. M. Ames, S. J. Mandrekar, J. M. Reid, A. A. Adjei, D. O. Toft, S. L. Safgren and C. Erlichman, “A Phase I Trial of Twice-Weekly 17-Allylamino-Demethoxy-Geldanamycin in Patients with Advanced Cancer,” Clinical Cancer Research, Vol. 12, No. 20, 2006, pp. 6087-6093.
[98] F. N. Shadad and R. K. Ramanathan, “17-Dimethylaminoethylamino-17-Demethoxygeldanamycin in Patients with Advanced-Stage Solid Tumors and Lymphoma: A Phase I Study,” Clinical Lymphoma & Myeloma, Vol. 6, No. 6, 2006, pp. 500-501. doi:10.3816/CLM.2006.n.034
[99] S. Sharp and P. Workman, “Inhibitors of the HSP90 Molecular Chaperone: Current Status,” Advances in Cancer Research, Vol. 95, 2006, pp. 323-348. doi:10.1016/S0065-230X(06)95009-X
[100] S. Modi, A. T. Stopeck, M. S. Gordon, D. Mendelson, D. B. Solit, R. Bagatell, W. Ma, J. Wheler, N. Rosen, L. Norton, G. F. Cropp, R. G. Johnson, A. L. Hannah and C. A. Hudis, “Combination of Trastuzumab and Tanespimycin (17-AAG, KOS-953) Is Safe and Active in Trastuzumab-Refractory HER-2 Overexpressing Breast Cancer: A Phase I Dose-Escalation Study,” Journal of Clinical Oncology, Vol. 25, No. 34, 2007, pp. 5410-5417. doi:10.1200/JCO.2007.11.7960
[101] S. Pacey, U. Banerji, I. Judson and P. Workman, “HSP90 Inhibitors in the Clinic,” Handbook of Experimental Pharmacology, Vol. 172, 2006, pp. 331-358. doi:10.1007/3-540-29717-0_14
[102] S. Messaoudi, J. F. Peyrat, J. D. Brion and M. Alami, “Recent Advances in HSP90 Inhibitors as Antitumor Agents,” Anticancer Agents in Medicinal Chemistry, Vol. 8, No. 7, 2008, pp. 761-782.
[103] D. B. Solit and G. Chiosis, “Development and Application of HSP90 Inhibitors,” Drug Discovery Today, Vol. 13, No. 1-2, 2008, pp. 38-43. doi:10.1016/j.drudis.2007.10.007
[104] Y. Li, T. Zhang, S. J. Schwartz and D. Sun, “New Developments in HSP90 Inhibitors as Anti-Cancer Therapeutics: Mechanisms, Clinical Perspective and More Potential,” Drug Resistance Updates, Vol. 12, No. 1, 2009, pp. 17-27. doi:10.1016/j.drup.2008.12.002
[105] Y. Fukuyo, C. R. Hunt and N. Horikoshi, “Geldanamycin and Its Anti-Cancer Activities,” Cancer Letters, Vol. 290, No. 1, 2010, pp. 24-35. doi:10.1016/j.canlet.2009.07.010
[106] S. T. Calderwood, “Heat Shock Protein in Breast Cancer Progression—A Suitable Case for Treatment?” International Journal of Hyperthermia, Vol. 26, No. 7, 2010, pp. 681-685. doi:10.3109/02656736.2010.490254
[107] D. M. Nguyen, D. Lorang, G. A. Chen, J. H. Stewart 4th, E. Tabibi and D. S. Schrump, “Enhancement of Paclitaxel-Mediated Cytotoxicity in Lung Cancer Cells by 17-Allylamino Geldanamycin: In Vitro and In Vivo Analysis,” Annals of Thoracic Surgery, Vol. 72, No. 2, 2001, pp. 371-379. doi:10.1016/S0003-4975(01)02787-4
[108] M. Rahmani, C. Yu, Y. Dai, E. Reese, W. Ahmed, P. Dent and S. Grant, “Coadministration of the Heat Shock Protein 90 Antagonist 17—Allylamino-17-Demethoxygeldanamycin with Suberoylanilide Hydroxamic Acid or Sodium Butyrate Synergistically Induces Apoptosis in Human Leukemia Cells,” Cancer Research, Vol. 63, No. 23, 2003, pp. 8420-8427.
[109] P. George, P. Bali, P. Cohen, J. Tao, F. Guo, C. Sigua, A. Vishvanath, W. Fiskus, A. Scuto, S. Annavarapu, L. Moscinski and K. Bhalla, “Cotreatment with 17-Allylamino-Demethoxygeldanamycin and FLT-3 Kinase Inhibitor PKC412 Is Highly Effective against Human Acute Myelogenous Leukemia Cells with Mutant FLT-3,” Cancer Research, Vol. 64, No. 10, 2004, pp. 3645-3652. doi:10.1158/0008-5472.CAN-04-0006
[110] P. George, P. Bali, S. Annavarapu, A. Scuto, W. Fiskus, F. Guo, C. Sigua, G. Sondarva, L. Moscinski, P. Atadja and K. Bhalla, “Combination of the Histone Deacetylase Inhibitor LBH589 and the HSP90 Inhibitor 17-AAG Is Highly Active against Human CML-BC Cells and AML Cells with Activating Mutation of FLT-3,” Blood, Vol. 105, No. 4, 2005, pp. 1768-1776. doi:10.1182/blood-2004-09-3413
[111] R. A. Mesa, D. Loegering, H. L. Powell, K. Flatten, S. J. Arlander, N. T. Dai, M. P. Heldebrant, B. T. Vroman, B. D. Smith, J. E. Karp, C. J. Eyck, C. Erlichman, S. H. Kaufmann and L. M. Karnitz, “Heat Shock Protein 90 Inhibition Sensitizes Acute Myelogenous Leukemia Cells to Cytarabine,” Blood, Vol. 106, No. 1, 2005, pp. 318-327. doi:10.1182/blood-2004-09-3523
[112] I. A. Vasilevskaya and P. J. O’Dwyer, “17-Allylamino-17-Demethoxygeldanamycin Overcomes Trail Resistance in Colon Cancer Cell Lines,” Biochemical Pharmacology, Vol. 70, No. 4, 2005, pp. 580-589. doi:10.1016/j.bcp.2005.05.018
[113] C. R. Barker, A. V. McNamara, S. A. Rackstraw, D. E. Nelson, M. R. White, A. J. Watson and J. R. Jenkins, “Inhibition of HSP90 Acts Synergistically with Topoisomerase II Poisons to Increase the Apoptotic Killing of Cells Due to an Increase in Topoisomerase II Mediated DNA Damage,” Nucleic Acids Research, Vol. 34, No. 4, 2006, pp. 1148-1157. doi:10.1093/nar/gkj516
[114] N. Sain, B. Krishnan, M. G. Ormerod, A. De Rienzo, W. M. Liu, S. B. Kaye, P. Workman and A. L. Jackman, “Potentiation of Paclitaxel Activity by the HSP90 Inhibitor17-Allylamino-17-Demethoxygeldanamycin in Human Ovarian Carcinoma Cell Lines with High Levels of Activated AKT,” Molecular Cancer Therapeutics, Vol. 5, No. 5, 2006, pp. 1197-1208. doi:10.1158/1535-7163.MCT-05-0445
[115] D. R. Premkumar, B. Arnold and I. F. Pollack, “Cooperative Inhibitory Effect of ZD1839 (Iressa) in Combination with 17-AAG on Glioma Cell Growth,” Molecular Carcinogenesis, Vol. 45, No. 5, 2006, pp. 288-301. doi:10.1002/mc.20141
[116] S. S. Ramalingam, M. J. Egorin, R. K. Ramanathan, S. C. Remick, R. P. Sikorski, T. F. Lagattuta, G. S. Chatta, D. M. Friedland, R. G. Stoller, D. M. Potter, S. P. Ivy and C. P. Belani, “A Phase I Study of 17-Allylamino-17-Demethoxygeldanamycin Combined with Paclitaxel in Patients with Advanced Solid Malignancies,” Clinical Cancer Research, Vol. 14, No. 11, 2008, pp. 3456-3461. doi:10.1158/1078-0432.CCR-07-5088
[117] J. T. Price, J. M. Quinn, N. A. Sims, J. Vieusseux, K. Waldeck, S. E. Docherty, D. Myers, A. Nakamura, M. C. Waltham, M. T. Gillespie and E. W. Thompson, “The Heat Shock Protein 90 Inhibitor, 17-Allylamino-17-Demethoxygeldanamicin, Enhances Osteoclast Formation and Potentiates Bone Metastasis of a Human Breast Cancer Cell Line,” Cancer Research, Vol. 65, No. 11, 2005, pp. 4929-4938. doi:10.1158/0008-5472.CAN-04-4458
[118] G. Chiosis, “Discovery and Development of Purine-Scaffold HSP90 Inhibitors,” Current Topics in Medicinal Chemistry, Vol. 6, No. 11, 2006, pp. 1183-1191. doi:10.2174/156802606777812013
[119] M. R. Jensen, J. Schoepfer, T. Radimerski, A. Massey, C. T. Guy, J. Brueggen, C. Quadt, A. Buckler, R. Cozens, M. J. Drysdale, C. Garcia-Echeverria and P. Chène, “NVP-AUY922: A Small Molecule HSP90 Inhibitor with Potent Antitumor Activity in Preclinical Breast Cancer Models,” Breast Cancer Research, Vol. 10, No. 2, 2008, p. R33. doi:10.1186/bcr1996
[120] F. Yi and L. Regan, “A Novel Class of Small Molecule Inhibitors of HSP90,” ACS Chemical Biology, Vol. 3, No. 10, 2008, pp. 645-654. doi:10.1021/cb800162x
[121] J. L. Holmes, S. Y. Sharp, S. Hobbs and P. Workman, “Silencing of HSP90 Cochaperone AHA1 Expression Decreases Client Protein Activation and Increases Cellular Sensitivity to the HSP90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin,” Cancer Research, Vol. 68, No. 4, 2008, pp. 1188-1197. doi:10.1158/0008-5472.CAN-07-3268
[122] W. Fiskus, Y. Ren, A. Mohapatra, P. Bali, A. Mandawat, R. Rao, B. Herger, Y. Yang, P. Atadja, J. Wu and K. Bhalla, “Hydroxamic Acid Analogue Histone Deacetylase Inhibitors Attenuate Estrogen Receptor-Alpha Levels and Transcriptional Activity: A Result of Hyperacetylation and Inhibition of Chaperone Function of Heat Shock Protein 90,” Clinical Cancer Research, Vol. 13, No. 16, 2007, pp. 4882-4890. doi:10.1158/1078-0432.CCR-06-3093
[123] S. Tsutsumi, B. Scroggins, F. Koga, M. J. Lee, J. Trepel, S. Felts, C. Carreras and L. Neckers, “Small Molecule Cell-Impermeant HSP90 Antagonist Inhibits Tumor Cell Motility and Invasion,” Oncogene, Vol. 27, No. 17, 2008, pp. 2478-2487. doi:10.1038/sj.onc.1210897
[124] S. K. Calderwood and J. Gong, “Molecular Chaperones in Mammary Cancer Growth and Breast Tumor Therapy,” Journal of Cellular Biochemistry, Vol. 113, No. 4, 2012, pp. 1096-1103. doi:10.1002/jcb.23461
[125] H. Yi, Y. Rong, Z. Yankai, L. Wentao, Z. Hongxia, W. Jie, C. Rongyue, L. Taiming and L. Jingjing, “Improved Efficacy of DNA Vaccination against Breast Cancer by Boosting with the Repeat Beta-hCG C-Terminal Peptide Carried by Mycobacterial Heat-Shock Protein HSP65,” Vaccine, Vol. 24, No. 14, 2006, pp. 2575-2584. doi:10.1016/j.vaccine.2005.12.030
[126] Y. Takakura, S. Takemoto and M. Nishikawa, “HSP- Based Tumor Vaccines: State-of-the-Art and Future Directions,” Current Opinion in Molecular Therapeutics, Vol. 9, No. 4, 2007, pp. 385-391.
[127] J. Schreiber, R. Stahn, J. A. Schenk, U. Karsten and G. Pecher, “Binding of Tumor Antigen Mucin (MUC1) Derived Peptides to the Heat Shock Protein DnaK,” Anticancer Research, Vol. 20, No. 5A, 2000, pp. 3093-3098.
[128] P. Srivastava, “Interaction of Heat Shock Proteins with Peptides and Antigen Presenting Cells: Chaperoning of the Innate and Adaptive Immune Responses,” Annual Review of Immunology, Vol. 20, 2002, pp. 395-425. doi:10.1146/annurev.immunol.20.100301.064801
[129] V. Mazzaferro, J. Coppa, M. G. Carrabba, L. Rivoltini, M. Schiavo, E. Regalia, L. Mariani, T. Camerini, A. Marchianò, S. Andreola, R. Camerini, M. Corsi, J. J. Lewis, P. K. Srivastava and G. Parmiani, “Vaccination with Autologous Tumor-Derived Heat-Shock Protein gp96 after Liver Resection for Metastatic Colorectal Cancer,” Clinical Cancer Research, Vol. 9, No. 9, 2003, pp. 3235-3245.
[130] M. J. Smith, A. C. Culhane, S. Killeen, M. A. Kelly, J. H. Wang, T. G. Cotter and H. P. Redmond, “Mechanisms Driving Local Breast Cancer Recurrence in a Model of Breast-Conserving Surgery,” Annals of Surgical Oncology, Vol. 15, No. 10, 2008, pp. 2954-2964. doi:10.1245/s10434-008-0037-5
[131] K. P. Lee, L. E. Raez and E. R. Podack, “Heat Shock Protein-Based Cancer Vaccines,” Hematology Oncology Clinics of North America, Vol. 20, No. 3, 2006, pp. 637-659. doi:10.1016/j.hoc.2006.02.007
[132] A. Murshid, J. Gong and S. K. Calderwood, “Heat-Shock Proteins in Cancer Vaccines: Agents of Antigen Cross-Presentation,” Expert Review of Vaccines, Vol. 7, No. 7, 2008, pp. 1019-1030. doi:10.1586/14760584.7.7.1019
[133] M. Tariq, U. Nussbaumer, Y. Chen, C. Beisel and R. Paro, “Trithorax Requires HSP90 for Maintenance of Active Chromatin at Sites of Gene Expression,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 4, 2009, pp. 1157-1162. doi:10.1073/pnas.0809669106
[134] K. Makiyama, J. Hamada, M. Takada, K. Murakawa, Y. Takahashi, M. Tada, E. Tamoto, G. Shindo, A. Matsunaga, K. Teramoto, K. Komuro, S. Kondo, H. Katoh, T. Koike and T. Moriuchi, “Aberrant Expression of HOX Genes in Human Invasive Breast Carcinoma,” Oncology Reports, Vol. 13, No. 4, 2005, pp. 673-679.
[135] O. Boucherat, F. Guillou, J. Aubin and L. Jeannotte, “Hoxa5: A Master Gene with Multifaceted Roles,” Médecine Sciences (Paris), Vol. 25, No. 1, 2009, pp. 77-82. doi:10.1051/medsci/200925177

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.