Photoluminescent Properties of CoMoO4 Nanorods Quickly Synthesized and Annealed in a Domestic Microwave Oven


A simple way to prepare α- and β-CoMoO4 nanorods is reported in this paper. CoMoO4xH2O nanorod precursors were obtained using the microwave-assisted hydrothermal (MAH) method. By annealing the as-prepared CoMoO44xH2O precursor at 600℃ for 10 min in a domestic microwave oven, α- and β-CoMoO4 nanorods were prepared. These powders were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform Raman microscopy and ultraviolet visible absorption spectroscopy (UV-vis spectra) as well as photoluminescence (PL) measurements. Based on the results, these materials revealed nanorod morphology. PL spectra obtained at room temperature for α- and β-CoMoO4 particles exhibited maximum components around the blue light emission. The results show that the domestic microwave oven has been successfully employed to obtain α- and β-CoMoO4 nanoparticles.

Share and Cite:

A. Moura, L. Oliveira, P. Pereira, I. Rosa, M. Li, E. Longo and J. Varela, "Photoluminescent Properties of CoMoO4 Nanorods Quickly Synthesized and Annealed in a Domestic Microwave Oven," Advances in Chemical Engineering and Science, Vol. 2 No. 4, 2012, pp. 465-473. doi: 10.4236/aces.2012.24057.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. P. A. Marques, V. M. Longo, D. M. A. de Melo, P. S. Pizani, E. R. Leite, J. A. Varela and E. Longo, “Shape Controlled Synthesis of CaMoO4 Thin Films and Their Photoluminescence Property,” Journal of Solid State Chemistry, Vol. 181, No. 5, 2008, pp. 1249-1257. doi:10.1016/j.jssc.2008.01.051
[2] N. Klassen, S. Shmurak, B. Red’kin, B. Ille, M. Lebeau, P. Lecoq and M. Schneegans, “Correlations between Structural and Scintillation Characteristics of Lead and Cadmium Tungstates,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 486, No. 1-2, 2002, pp. 431-436. doi:10.1016/S0168-9002(02)00748-9
[3] F. A. Danevich, A. S. Georgadze, V. V. Kobychev, B. N. Kropivyansky, V. N. Kuts, A. S. Nikolaiko, V. I. Tretyak and Y. Zdesenko, “The Research of 2β Decay of 116Cd with Enriched 116CdWO4 Crystal Scintillators,” Physics Letters B, Vol. 344, No. 1-4, 1995, pp. 72-78. doi:10.1016/0370-2693(94)01528-K
[4] B. G. Hyde and S. Andersson, “Inorganic Crystal Structures,” Crystal Research and Technology, Vol. 25, 1990, p. 676.
[5] A. P. Young and C. H. Schwartz, “High-Pressure Synthesis of Molybdates with the Wolframite Structure,” Science, Vol. 141, No. 3578, 1963, pp. 348-349. doi:10.1126/science.141.3578.348
[6] Y. Ding, Y. Wan, Y. L. Min, W. Zhang and S. H. Yu, “General Synthesis and Phase Control of Metal Molybdate Hydrates MMoO4?nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and Electrochemical Properties,” Inorganic Chemistry, Vol. 47, No. 17, 2008, pp. 7813-7823. doi:10.1021/ic8007975
[7] J. E. Miller, N. B. Jackson, L. Evans, A. G. Sault and M. M. Gonzales, “The Formation of Active Species for Oxidative Dehydrogenation of Propane on Magnesium Molybdates,” Catalysis Letters, Vol. 58, No. 2-3,1999, pp. 147-152. doi:10.1023/A:1019013514105
[8] J. A. Rodriguez, S. Chaturvedi, J. C. Hanson and J. L. Brito, “Reaction of H2 and H2S with CoMoO4 and NiMoO4:? TPR, XANES, Time-Resolved XRD, and Molecular-Orbital Studies,” Journal of Physical Chemistry B, Vol. 103, No. 5, 1999, pp. 770-781. doi:10.1021/jp983115m
[9] J. Zhao, Q. Wu and M. Wen, “Temperature-Controlled Assembly and Morphology Conversion of Co MoO4?3/4 H2O Nano-Superstructured Grating Materials,” Journal of Materials Science, Vol. 44, No. 23, 2009, pp. 6356-6362. doi:10.1007/s10853-009-3876-y
[10] K. Eda, Y. Uno, N. Nagai, N. Sotani and M. S. Whittingham, “Crystal Structure of Cobalt Molybdate Hydrate CoMoO4?nH2O,” Journal of Solid State Chemistry, Vol. 178, No. 9, 2005, pp. 2791-2797. doi:10.1016/j.jssc.2005.06.014
[11] J. A. Rodriguez, S. Chaturvedi, J. C. Hanson, A. Albornoz and J. L. Brito, “Electronic Properties and Phase Transformations in CoMoO4 and NiMoO4: XANES and Time-Resolved Synchrotron XRD Studies,” Journal of Physical Chemistry B, Vol. 102, No. 8, 1998, pp. 1347-1355. doi:10.1021/jp972137q
[12] H. Ehrenberg, M. Wiesmann, J. García-Jaca, H. Weitzel and H. Fuess, “Magnetic Structures of the High-Pressure Modifications of CoMoO4 and CuMoO4,” Journal of Magnetism Materials, Vol. 182, No. 1-2, 1998, pp. 152-160. doi:10.1016/S0304-8853(97)01008-1
[13] Y. M. Kong, J. Peng, Z. F. Xin, B. Xue, B. X. Dong, F. S. Shen and L. Li, “Selective Synthesis and Novel Properties of Single Crystalline α-CoMoO4 Nanorods/Nano Whiskers,” Materials Letters, Vol. 61, No. 10, 2007, pp. 2109-2112. doi:10.1016/j.matlet.2006.08.028
[14] M. Wiesmann, H. Ehrenberg, G. Wltschek, P. Zinn, H. Weitzel and H. Fuess, “Crystal Structures and Magnetic Properties of the High-Pressure Modifications of CoMoO4 and NiMoO4,” Journal of Magnetism of Magnetism Materials, Vol. 150, No. 1, 1995, pp. L1-L4. doi:10.1016/0304-8853(95)00516-1
[15] Y. Y. Meng and Z. X. Xiong, “Preparation of Molybdates with Antibacterial Property,” Key Engineering Materials, Vol. 368-372, 2008, pp. 1516-1518. doi:10.4028/
[16] C. Mazzocchia, C. Aboumrad, C. Diagne, E. Tempesti, J. M. Herrmann and G. Thomas, “On the NiMoO4 Oxidative Dehydrogenation of Propane to Propene: Some Physical Correlations with the Catalytic Activity,” Catalysis Letters, Vol. 10, No. 3-4, 1991, pp.181-191. doi:10.1007/BF00772070
[17] J. L. Brito and A. L. Barbosa, “Effect of Phase Composition of the Oxidic Precursor on the HDS Activity of the Sulfided Molybdates of Fe(II), Co(II), and Ni(II),” Journal of Catalysis, Vol. 171, No. 2, 1997, pp. 467-475. doi:10.1006/jcat.1997.1796
[18] G. W. Smith, “The Crystal Structures of Cobalt Molybdate CoMoO4 and Nickel Molybdate NiMoO4,” Acta Crystallographica, Vol. 15, 1962, pp. 1054-1057. doi:10.1107/S0365110X62002765
[19] A. W. Sleight and B. L. Chamberland, “Transition Metal Molybdates of the Type AMoO4,” Inorganic Chemistry, Vol. 7, No. 8, 1968, pp. 1672-1675. doi:10.1021/ic50066a050
[20] K. Sieber, R. Kershae, K. Dwight and A. Wold, “Dependence of Magnetic Properties on Structure in the Systems Nickel(II) Molybdate(VI) and Cobalt(II) Molybdate(VI),” Inorganic Chemistry, Vol. 22, No. 19, 1983, pp. 2667-2669. doi:10.1021/ic00161a004
[21] C. Mazzocchia, C. Aboumrad, C. Diagne, E. Tempesti, J. M. Herrmann and G. Thomas, “On the NiMoO4 Oxidative Dehydrogenation of Propane to Propene: Some Physical Correlations with the Catalytic Activity,” Catalysis Letters, Vol. 10, No. 3-4, 1991, pp. 181-191.
[22] A. Maione and M. Devilers “Solid Solutions of Ni and Co Molybdates in Silica-Dispersed and Bulk Catalysts Prepared by Sol-Gel and Citrate Methods,” Journal of Solid State Chemistry, Vol. 177, No. 7, 2004, pp. 2339-2349. doi:10.1016/j.jssc.2004.03.022
[23] J. Bi, C.-H. Cui, X. Lai, F. Shi and D.-J. Gao, “Synthesis of Luminescent SrMoO4 Thin Films by a Non-Reversible Galvanic Cell Method,” Materials Research Bulletin, Vol. 43, No. 3, 2008, pp. 743-747. doi:10.1016/j.materresbull.2007.03.021
[24] S. Komarneni, R. Roy and Q. H. Li, “Microwave-Hydrothermal Synthesis of Ceramic Powders,” Materials Research Bulletin, Vol. 27, No. 12, 1992, pp. 1393-1405. doi:10.1016/0025-5408(92)90004-J
[25] S. Komarneni, Q. H. Li and R. Roy, “Microwave-Hydrothermal Processing for Synthesis of Layered and Network Phosphates,” Journal of Materials Chemistry, Vol. 4, 1994, pp. 1903-1906. doi:10.1039/jm9940401903
[26] G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz and G. D. Will, “Modification of TiO2 for Enhanced Surface Properties:? Finite Ostwald Ripening by a Microwave Hydrothermal Process,” Langmuir, Vol. 22, No. 5, 2006, pp. 2016-2027. doi:10.1021/la052716j
[27] J. C. Sczancoski, L. S. Cavalcante, M. R. Joya, J. A. Varela, P. S. Pizani and E. Longo, “SrMoO4 Powders Processed in Microwave-Hydrothermal: Synthesis, characterization and Optical Properties,” Chemical Engineering Journal, Vol. 140, No. 1-3, 2008, pp. 632-637. doi:10.1016/j.cej.2008.01.015
[28] M. Abdel-Dayem Hany, “Dynamic Phenomena during Reduction of α-NiMoO4 in Different Atmospheres:? Insitu Thermo-Raman Spectroscopy Study,” Industrial & Engineering Chemistry Research, Vol. 46, No. 8, 2007, pp. 2466-2472. doi:10.1021/ie0613467
[29] L. S. Cavalcante, J. C. Sczancoski, L. F. Lima Jr., J. W. M. Espinosa, P. S. Pizani, J. A. Varela and E. Longo, “Synthesis, Characterization, Anisotropic Growth and Photoluminescence of BaWO4,” Crystal Growth & Design, Vol. 9, No. 2, 2009, pp. 1002-1012. doi:10.1021/cg800817x
[30] D. L. Wood and J. Tauc, “Weak Absorption Tails in Amorphous Semiconductors,” Physical Review B, Vol. 5, No. 8, 1972, pp. 3144-3151. doi:10.1103/PhysRevB.5.3144
[31] P. K. Pandey, N. S. Bhave and R. B. Kharat, “Structural, Optical, Electrical and Photovoltaic Electrochemical Studies of Cobalt Molybdate Thin Films,” Indian Journal of Pure & Applied Physics, Vol. 44, 2006, pp. 52-28.
[32] A. P. A. Marques, F. V. Motta, E. R. Leite, P. S. Pizani, J. A. Varela, E. Longo and D. M. A. de Melo, “Evolution of Photoluminescence as a Function of the Structural Order or Disorder in CaMoO4 Nanopowders,” Journal of Applied Physics, Vol. 104, No. 4, 2008, Article ID: 043505. doi:10.1063/1.2968388
[33] X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Zhu and Y. Qian, “Aqueous Mineralization Process to Synthesize Uniform Shuttle-Like BaMoO4 Microcrystals at Room Temperature,” Journal of Solid State Chemistry, Vol. 180, No. 11, 2007, pp. 3288-3295. doi:10.1016/j.jssc.2007.07.010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.