Response of Jatropha on a Clay Soil to Different Concentrations of Micronutrients


In recent years Jatropha curcas L. has emerged as a biofuel crop with potential for its production in marginal land with application of treated sewage water. Since this is a new crop for its profitable cultivation, additional research is needed to develop optimal management programs, including macro and micronutrients applications. A pot experiment was conducted in a Greenhouse at the National Research Center, Dokki, Cairo, Egypt, during 2010 summer to evaluate effects of varying concentrations of iron (Fe), manganese (Mn), and zinc (Zn) in irrigation water (0, 50, 100, 150, 200 and 250 ppm) on the growth, biomass production, photosynthetic pigments, and mineral nutrients status in the plants. Increasing concentrations of Fe, Mn, and Zn in irrigation water up to 150 ppm increased the biomass weight, photosynthetic pigments, and nutrient uptake by Jatropha plants. Further increase in concentrations of micronutrients showed negative effects on the above response parameters. Therefore, this study demonstrates that Jatropha can be grown under irrigation using waste water containing reasonable concentrations of micronutrients and heavy metals. This property of Jatropha provides some support for potential use of this crop for phytoremediation of metal contaminated soils. However, long term field research is needed to further verify both the above beneficial effects.

Share and Cite:

A. El-Kader, M. Hussein and A. Alva, "Response of Jatropha on a Clay Soil to Different Concentrations of Micronutrients," American Journal of Plant Sciences, Vol. 3 No. 10, 2012, pp. 1376-1381. doi: 10.4236/ajps.2012.310166.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Ghafoor, A. Rauf, M. Arif and W. Muzzafar, “Chemical Composition of Effluent from Different Industries from Faisalabad City,” Pakistan Journal of Agricultural Science, Vol. 31, 1995, pp. 37-69.
[2] G. R. Rout and P. Das, “Effect of Metal Toxicity on Plant Growth and Metabolism: I. Zinc,” Agronomy, Vol. 23, 2003, pp. 3-11.
[3] M. R. Broadley, P. J. White, J. P. Hammond, I. Zelko, and A. Lux, “Zinc in Plant,” New Phytologist, Vol. 173, 2007, pp. 677-702. doi:10.1111/j.1469-8137.2007.01996.x
[4] G. Abbas, M. Q. Khan, M. Jamil, M. Tahir and F. Hussain. Nutrient Uptake, Growth and Yield of Wheat (Triticumaestivum) as Affected by Zinc Application Rates,” International Journal of Agriculture & Biology, Vol.11, No. 4, 2009, pp. 389-396.
[5] M. Debnath and P. S. Bisen, “Jatropha curcas L.: A Multipurpose Stress Resistant Plant with a Potential for Ethno Medicine and Renewable Energy,” Current Pharmaceutical Biotechnology, Vol. 9, No. 4, 2008, pp. 288-306. doi:10.2174/138920108785161541
[6] H. A. Abdelgadir, S. D. Johnson and J. V. Staden, “Promoting Branching of a Potential Biofuel Crop Jatropha curcas L. by Foliar Application of Plant Growth Regulators,” Plant Growth Regulation, Vol.58, No. 3, 2007, pp. 287-295. doi:10.1007/s10725-009-9377-9
[7] S. K.Behera, P. Srivastava, R. Tripathy, J. P. Singh and N. Singh, “Evaluation of Plant Performance of Jatropha curcas L. under Diferent Agro-Practices for Optimizing Biomass: A Case Study,” Biomass and Bioenergy, Vol. 34, 2010, pp. 30-41. doi:10.1016/j.biombioe.2009.09.008
[8] A. A. A.Kheira and N. M. M. Atta, “Response of Jatropha curcas L. to Water Deficits: Yield, Water Use Efficiency and Oil Seed Characteristics,” Biomass and Bioenergy, Vol. 33, 2009, pp. 1343-1350.
[9] G. R. Rao, G. R. Korwar, A. K. Shanker and Y. S. Ramakrishna, “Genetic Associations, Variability and Diversity in Seed Characters, Growth, Reproductive Phonology and Yield in Jatropha curcas L. Accessions,” Trees, Vol. 22, No. 5, 2008, pp. 697-709. doi:10.1007/s00468-008-0229-4
[10] L. Ruth, “Bio or Bust? The Economic and Ecological Cost of Biofuels,” EMBO-Reports, Vol. 9, 2008, pp. 130-133. doi:10.1038/sj.embor.2008.6
[11] S. Gao, R. Yan, M. Cao, W. Yang, S. Wang and F. Chen, “Effects of Copper on Growth, Antioxidant Enzymes and Phenylalanine Ammonialyase Activities in Jatropha curcas L. Seedling,” Plant Soil Environment, Vol. 54, No. 3, 2008, pp. 117-122.
[12] S. Gao, Q. Li, C. Ou-Yang, L. Chen, S. Wang and F. Chen, “Lead Toxicity Induced Antioxidant Enzyme and Phenylalanine Ammonialyase Activities in Jatropha curcas L. Radicles,” Fresenius Environmental Bulletin, Vol. 18, No. 5b, 2009, pp. 811-815.
[13] H. K. Elminir, F. F. Areed and T. S. Elsayed, “Estimation of Solar Radiation Components Incident on Helwan Site Using Neural Networks,” Solar Energy, Vol. 79, No. 3, 2005, pp. 270-279. doi:10.1016/j.solener.2004.11.006
[14] A. Cottenie, M. Verloo, L. Kiekens, G. Velghe and R. Camerlynck, “Chemical Analysis of Plant and Soil Laboratory of Analytical and Agrochemistry,” State University Ghent, Belgium, 1982, pp. 100-129.
[15] M. Saric, R. Kostrori, T. Cupina and I. Geric, “Chlorophyll Determination,” Univ. Noven Sadu Prakitikum is kiziologize Bilijaka Beogard, Haucana, Anjiga, 1967.
[16] G. W. Snedecor and W. G. Cochran, “Statistical Methods,” 7th Edition, Iowa State University Press, Iowa, 1980.
[17] L. H. G. Chaves,T. H. C. Cunha, G. Barros, R. D. Lacerda and E. E. de Dantas, “Zinc and Copper in Jatropha curcas. L. Initial Growth of Culture,” Journal Caatinga, Vol. 22, No. 3, 2009, pp. 94-99.
[18] E. B. Silva, L. P. P. Tanure, S. R. Santos and P. S. Resende, “Visual Symptoms of Nutrient Deficiency in Physic Nut,” Pesquisa Agropecuária Brasileira, Vol. 44, No. 4, 2009, pp. 392 397. doi:10.1590/S0100-204X2009000400009
[19] L. H. G. Chaves, P. C. Cabral, G. Barro, R. D. Lacerda and E. E. Dantas, “Zinc and Copper in Jatropha curcas L. Elements Concentration in Leaves and Stems,” Journal Caatinga, Vol. 22 No. 3, 2009, pp. 100-106.
[20] B. G. Laviolaand and L. A. Dias, “Nutrient Concentration in Jatropha curcas L. Leaves and Fruits and Estimated Extraction at Harvest,” Revista Brasileira de Ciência do Solo, Vol. 32, No. 5, 2008, pp. 1969-1975.
[21] J. J. Heitholt, J. J. Sloan, C. T. Mackown, and R. I. Cabreva, “Soybean Growth on Calcareous Soil as Affected by Three Iron Sources,” Journalof Plant Nutrition, Vol. 25, No. 8, 2003, pp. 1727-1740. doi:10.1081/PLN-120006054
[22] H. Wang, R. L. Liu and J. Y. Jin, “Effect of Zinc and Soil Moisture on Photosynthetic Rate and Chlorophyll Fluorescence’s Parameters of Maize Plants,” Biologia Plantarum, Vol. 53, No. 1, 2009, pp. 191-194. doi:10.1007/s10535-009-0033-z
[23] S. Kobraee, K. Shamsi and S. Eklitiori, “Soybean Nodulation, Chlorophyll Concentration Affected by Some Micronutrients,” Annals of Biological Research, Vol. 2, No. 2, 2011, pp. 414-422.
[24] Ghavri and P. Singh, “Phytotranslocation of Fe by Biodiesel Plant Jatropha curcas L. Grown on Iron Rich Wasteland Soil,” Brazilian Journal of Plant Physiology, Vol. 22, No. 4, 2010, pp. 235-243. doi:10.1590/S1677-04202010000400003
[25] G. P. Kumar, S. K. Yadav, P. R. Thawale, S. K. Singh and A. A. Juwarkar, “Growth of Jatropha curcas on Heavy Metal Contaminated Soil Amended with Industrial Wastes and Azotobacter—A Greenhouse Study,” Bioresource Technology, Vol. 99, No. 6, 2008, pp. 2078-2082. doi:10.1016/j.biortech.2007.03.032

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.