The Distribution and Substrate Specificity of Extracellular Nuclease Activity in Marine Fungi


The distribution and specificity of extracellular nucleases produced by marine fungi belonging to eleven genera, namely: Alternaria, Aspergillus, Aureobasidium, Chaetomium, Fusarium, Gliomastix, Humicola, Penicillium, Scopulariopsis, Wardomyces, Periconia, have implied its important function in the organic phosphorus and nitrogen circle in the Ocean. The fungal nucleases of 64 isolates tested were more or less specific for single-stranded DNA with a high preferential specificity towards poly-U substrate with forming of 5’-phosphate mononucleotides. A couple of the nucleases were capable of RNA digesting. The highest level of extracellular nucleolytic ability was observed in Penicillium spp. isolates. The tight correlation found between extracellular nuclease activity and the rate of thymidine uptake by actively growing and sporulating marine fungus Penicillium melinii suggests that this nuclease is required for fulfilling the nucleotide pool of precursors of DNA biosynthesis during transformation of hyphae into the aerial mycelium and conidia in stressful environmental conditions.

Share and Cite:

L. Balabanova, M. Pivkin and V. Rasskazov, "The Distribution and Substrate Specificity of Extracellular Nuclease Activity in Marine Fungi," Open Journal of Marine Science, Vol. 2 No. 4, 2012, pp. 188-195. doi: 10.4236/ojms.2012.24022.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. H. Paul, W. H. Jeffrey and J. P. Cannon, “Production of Dissolved DNA, RNA and Protein by Mycrobial Populations in a Florida Reservoir,” Applied and Environmental Microbiology, Vol. 56, No. 10, 1990, pp. 2957-2962.
[2] A. Dell’Anno and R. Danavaro, “Extracellular DNA Plays a Key Role in Deep-Sea Ecosystem Functioning,” Science, Vol. 309, No. 5744, 2005, p. 2179. doi:10.1126/science.1117475
[3] J. H. Paul, A. W. Jeffrey and M. F. DeFlaun, “Dynamics of Extracellular DNA in the Marine Environment,” Applied and Environmental Microbiology, Vol. 53, No. 1, 1987, pp. 170-179.
[4] J. H. Paul, M. F. DeFlaun and W. H. Jeffrey, “Mechanisms of DNA Utilization by Esturine Microbial Populations,” Applied and Environmental Microbiology, Vol. 54, No. 7, 1988, pp. 1682-1688.
[5] C. A. Shearer, “Fungal Competition,” Canadian Journal of Botany-Revue, Canadienne de Botanique, Vol. 73, 1995, pp. S1259-S1264. doi:10.1139/b95-386
[6] R. G. Nicieza, J. Huergo, B. A. Connolly and J. Sánchez, “Purification, Characterization and Role of Nucleases and Serine Proteases in Streptomyces Differentiation: Analogies with the Biochemical Processes Described in Late-Steps of Eukaryotic Apoptosis,” Journal of Biological Chemistry, Vol. 274, No. 29, 1999, pp. 20366-20375. doi:10.1074/jbc.274.29.20366
[7] S. Aoyagia, M. Sugiyamaa and H. Fukudac, “BEN1 and ZEN1 cDNAs Encoding S1-Type DNases That Are Associated with Programmed Cell Death in Plants,” FEBS Letters, Vol. 429, 1998, pp. 134-138. doi:10.1016/S0014-5793(98)00563-8
[8] T. Panavas and B. Rubinstein, “Oxidative Events during Programmed Cell Death of Daylily (Hemerocallis Hybrid) Petals,” Plant Science, Vol. 133, No. 2, 1998, pp. 125- 138. doi:10.1016/S0168-9452(98)00034-X
[9] Y. Muramoto, A. Watanabe, T. Nakamura and T. Takabe, “Enhanced Expression of a Nuclease Gene in Leaves of Barley Plants under Salt Stress,” Gene, Vol. 234, No. 2, 1999, pp. 315-321. doi:10.1016/S0378-1119(99)00193-6
[10] M. Sugiyama, J. Ito, S. Aoyagi and H. Fukuda, “Endonu-cleases,” Plant Molecular Biology, Vol. 44, No. 3, 2000, pp. 387-397. doi:10.1023/A:1026504911786
[11] K. Shishido and T. Ando, “Single-Strand Specific Nucleases,” In: S. M. Linn and R. J. Roberts, Eds., Nucleases, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1982, pp. 155-185.
[12] V. Vogt, “Purification and Future Properties of Single-Strand-Specific Nuclease from Aspergillus oryzae,” FEBS Journal, Vol. 33, 2005, pp. 192-200.
[13] N. A. Desai and V. Shankar, “Single-Strand-Specific Nuclease from Basidiobolus haptosporus Nuclease Bh1),” Scientific Research and Essay, Vol. 2, No. 5, 2007, pp. 139-146.
[14] C. Osterhage, M. Schwibbe, G. M. Konig and A. D. Wright, “Difference between Marine and Terrestrial Phoma Species as Determined by HPLC-DAD and HPLC-MS,” Phytochemical Analysis, Vol. 11, No. 5, 2000, pp. 288- 294. doi:10.1002/1099-1565(200009/10)11:5<288::AID-PCA528>3.0.CO;2-G
[15] A. Baakza, B. P. Yala and H. C. Dube, “A Comparative Study of Siderophore Production by Fungi from Marine and Terrestrial Habitats,” Journal of Experimental Marine Biology and Ecology, Vol. 311, No. 1, 2004, pp. 1-9. doi:10.1016/j.jembe.2003.12.028
[16] H. McCallum, C. D. Harvell and A. Dobson, “Rates of Spread of Marine Pathogens,” Ecology Letters, Vol. 6, No. 12, 2003, pp. 1062-1067. doi:10.1046/j.1461-0248.2003.00545.x
[17] K. D. Hyde, C. A. Farrant and E. B. G. Jones, “Isolation of Marine Fungi,” Botanica Marina, Vol. 30, 1987, pp. 291-303. doi:10.1515/botm.1987.30.4.291
[18] Y. V. Khudyakova, M. V. Pivkin, T. A. Kuznetsova and V. I. Svetashev, “Fungi in Sediments of the Sea of Japan and Their Biologically Active Metabolites,” Microbiology, Vol. 69, No. 5, 2000, pp. 608-611. doi:10.1007/BF02756817
[19] N. Y. Artemchuk, “Microflora of USSR’s Seas,” Nauka, Moscow, 1981.
[20] M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248- 254. doi:10.1016/0003-2697(76)90527-3
[21] V. I. Bilai, “Definition of the Growth and Biosynthetic Activity of Fungi,” In: V. I. Bilay, Ed., Method of Experimental Mycology, Naukova Dumka, Kiev, 1982, pp. 146-147.
[22] S. A. Martin, R. S. Ullrich and W. L. Meyer, “A Comparative Study of Nucleases Exhibiting Preference for Single-Stranded Nucleic Acid,” Biochimica et Biophysica Acta, Vol. 867, No. 1-2, 1986, pp. 76-80. doi:10.1016/0167-4781(86)90031-X
[23] M. Pimkin, C. Miller, L. Blakesley, C. Oleykowski, N. Kodali and A. Yeung, “Characterization of a Periplasmic S1-Like Nuclease Coded by the Mesorhizobium Loti Symbiosis Island,” Biochemical and Biophysical Research Communications, Vol. 343, No. 1, 2006, pp. 77-84. doi:10.1016/j.bbrc.2006.02.117
[24] T. K. Tan, C. L. Teng and B. G. Jones, “Substrate Type and Microbial Interaction as Factors Affecting Ascocarp Formation by Mangroove Fungi,” Hydrobiologia, Vol. 295, 1995, pp. 127-134. doi:10.1007/BF00029119
[25] M. Muntanola-Cvetkovic, “A Mycological Survey of the South Adriatic Sea,” Journal of Experimental Marine Biology and Ecology, Vol. 43, No. 3, 1980, pp. 193-206. doi:10.1016/0022-0981(80)90047-7
[26] Y. Vishwakiran, N. L. Thakur, S. Raghukumar, P. L.Yennawar and A. C. Anil, “Spatial and Temporal Distribution of Fungi and Wood-Borers in the Coastal Tropical Waters of Goa, India,” Botanica Marina, Vol. 44, 2001, pp. 47-56. doi:10.1515/BOT.2001.007
[27] K. C. Hsia , C. L. Li and H. S. Yuan, “Structural and Functional Insight into Sugar-Nonspecific Nucleases in Host Defense,” Current Opinion in Structural Biology, Vol. 15, No. 1, 2005, pp. 193-206. doi:10.1016/
[28] S. Y. Newell, “Established and Potential Impacts of Eukariotic Mycelial Decomposers in Marine/Terrestrial Ecotones,” Journal of Experimental Marine Biology and Ecology, Vol. 200, 1996, pp. 187-206. doi:10.1016/S0022-0981(96)02643-3
[29] K. E. Gonga, D. Jendrossek and H. P. Molitoris, “Fungal Degradation of the Thermoplastic Polymer Poly-Beta-Hydroxybutyric Acid (PHB) under Simulated Deep Sea Pressure,” Hydrobiologia, Vol. 426, 2000, pp. 173-183. doi:10.1023/A:1003971925285
[30] J. Ito and H. Fukuda, “ZEN1 Is a Key Enzyme in the Degradation of Nuclear DNA during Programmed Cell Death of Tracheary Elements,” Plant Cell, Vol. 14, No. 12, 2002, pp. 3201-3211. doi:10.1105/tpc.006411
[31] L. A. Balabanova, Y. M. Gafurov, M. V. Pivkin, N. A. Terentyeva, G. N. Likhatskaya and V. A. Rasskazov, “An Extracellular S1-Type Nuclease of Marine Fungus Penicillium melinii,” Marine Biotechnology, Vol. 14, No. 1, 2012, pp. 87-95. doi:10.1007/s10126-011-9392-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.