Simulation-Based Analysis and Intuitive Visualization of the Cutting Edge Load in Micromilling of Hardened Steel


The precise micromanufacturing of complex dies with small structures for sheet-bulk metal forming is a challenge due to the high hardness of the materials to be machined. Experiments have shown that micromilling of these difficult-to-machine materials is possible despite of their high hardness. Nevertheless, the higher wear of the tools plays a decisive role. When implementing the machining task as five-axis process, it is possible to control the wear distribution by tilting the milling tools. In this paper, a simulation system is presented which determines the loads acting on the cut- ting edge with regard to different criteria, e.g., the machined material or the effective impulse. Based on this knowledge, it is possible to design the milling process to minimize the tool wear and thereby to increase the lifetime of the milling tools. In order to show the applicability of the simulation system, test workpieces were machined and the experimental results are compared to the simulation data.

Share and Cite:

P. Kersting, D. Biermann and E. Krebs, "Simulation-Based Analysis and Intuitive Visualization of the Cutting Edge Load in Micromilling of Hardened Steel," Engineering, Vol. 4 No. 9, 2012, pp. 532-539. doi: 10.4236/eng.2012.49068.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Biermann and P. Kahnis, “Mikrofr?sen Filigraner Strukturen in Formeins?tzen,” MM Maschinenmarkt, Vol. 5, No. 2, 2010, pp. 36-40.
[2] P. Sieczkarek, L. Kwiatkowski, E. Tekkaya, E. Krebs, D. Biermann, W. Tillmann and J. Herper, “Improved Tool Surfaces for Incremental Bulk Forming Processes of Sheet Metals,” Proceedings of the ESAFORM Conference, 2012.
[3] K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu, R. Resnick and A. DeSilva, “Micro and Nano Machining by Electro-Physical and Chemical Processes,” Annals of the CIRP, Vol. 55, No. 2, 2006, pp. 643-666. doi:10.1016/j.cirp.2006.10.002
[4] X. Li, J. Wang and W. Li, “Current State and Prospect of Micro-Machining,” Proceedings of the 2007 IEEE International Conference on Automation and Logistics, Qinhuangdao, 18-21 August 2007, pp. 1414-1419.
[5] P. Kahnis and K. Weinert, “Analysis of Tool Influences on High-Precision-Micromilling of Steel Workpieces,” Proceedings of the 6th Euspen International Conference, Baden bei Wien, May 2006, pp. 128-132.
[6] D. Biermann and P. Kahnis, “Analysis and Simulation of Size Effects in Micromilling,” Production Engineering. Research and Development, Vol. 4, No. 1, 2010, pp. 2534. doi:10.1007/s11740-009-0201-1
[7] D. Biermann, E. Krebs and J. Schlenker, “Micromilling of Bionic Structures,” Proceedings ASPE 2011 Spring Topical Meeting—Structured and Freeform Surfaces, Charlotte, 3 June-3 August 2011, pp. 120-125.
[8] D. Dornfeld, S. Min and Y. Takeuchi, “Recent Advances in Mechanical Micromachining,” Annals of the CIRP, Vol. 55, No. 2, 2006, pp. 745-768. doi:10.1016/j.cirp.2006.10.006
[9] F. Vollertsen, D. Biermann, H. N. Hansen, I. S. Jawahir and K. Kuzman, “Size Effects in Manufacturing of Metallic Components,” Annals of the CIRP, Vol. 58, No. 2, 2009, pp. 566-587. doi:10.1016/j.cirp.2009.09.002
[10] G. Bissacco, H. N. Hansen and L. De Chiffre L, “Size Effects on Surface Generation in Micro Milling of Hardened Tool Steel,” Annals of the CIRP, Vol. 55, No. 1, 2006, pp. 593-596.
[11] D. Biermann, P. Kahnis and T. Surmann, “Analysis and Simulation of Cutting Forces in Downscaled Milling Processes,” Proceedings of the 10th CIRP International Workshop on Modeling of Machining Operations, Reggio Calabria, 27-28 August 2007. doi:10.1016/j.cirp.2010.03.057
[12] D. Biermann, P. Kersting and T. Surmann, “A General Approach to Simulating Workpiece Vibrations during Five-Axis Milling of Turbine Blades,” Annals of the CIRP, Vol. 59, No. 1, 2010, pp. 125-128.
[13] V. P. Astakhov and P. J. Davim, “Tools (Geometry and Material) and Tool Wear,” In: P. J. Davim, Ed., Machining: Fundamentals and Recent Advances, Springer, London, 2008, pp. 29-58.
[14] S. Melkote, M. Kumar, F. Hashimoto and G. Lahoti, “Laser Assisted Micro-Milling of Hard-to-Machine Materials,” Annals of the CIRP, Vol. 58, No. 1, 2009, pp. 45-48. doi:10.1016/j.cirp.2009.03.053
[15] M. Merklein, E. Tekkaya, A. Brosius, S. Opel and J. Koch, “Overview on Sheet-Bulk Metal Forming Processes,” Proceedings of the International Conference on Technology of Plasticity, 2011, pp. 1109-1114.
[16] H. K. T?nshoff, C. Arendt and R. Ben Amor, “Cutting of Hardened Steel,” Annals of the CIRP, Vol. 49, No. 2, 2000, pp. 547-566. doi:10.1016/S0007-8506(07)63455-6
[17] D. Biermann, A. Baschin, E. Krebs and J. Schlenker, “Manufacturing of Dies from Hardened Tool Steels by 3-Axis Micromilling,” Production Engineering Research and Development, Vol. 5, No. 2, 2011, pp. 209-217. doi:10.1007/s11740-010-0293-7
[18] A. Attanasio, E. Ceretti, S. Rizzuti, D. Umbrello and F. Micari, “3D Finite Element Analysis of Tool Wear in Machining,” Annals of the CIRP, Vol. 57, No. 1, 2008, pp. 61-64. doi:10.1016/j.cirp.2008.03.123
[19] H. Ding, N. Shen and Y. C. Shin, “Experimental and Modeling Analysis of Micro-Milling of Hardened H13 Tool Steel,” Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference, Corvallis, 13-17 June 2011, pp. 373-386.
[20] H. Li, X. Lai, C. Li, J. Feng and J. Ni, “Modelling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-End-Milling,” Journal of Micromechanics and Microengineering, Vol. 18, No. 2, 2008, Article ID: 025006. doi:10.1088/0960-1317/18/2/025006
[21] A. Zabel and J. Rautenberg, “Simulation Based Prediction of Tool Wear in Milling,” Proceedings of the 2nd Manufacturing Engineering Society International Conference, Madrid, 7 September-7 November 2007.
[22] C. Xu, T. Xu, Q. Zhu and H. Zhang, “Study of Adaptive Model Parameter Estimation for Milling Tool Wear,” Journal of Mechanical Engineering, Vol. 57, No. 7-8, 2011, pp. 568-578.
[23] V. P. Astakhov, “The Assessment of Cutting Tool Wear,” International Journal of Machine Tools and Manufacture, Vol. 44, No. 6, 2004, pp. 637-647. doi:10.1016/j.ijmachtools.2003.11.006
[24] H. Müller, D. Biermann, P. Kersting, T. Michelitsch, C. Begau, C. Heuel, R. Joliet, J. Kolanski, M. Kr?ller, C. Moritz, D. Niggemann, M. St?ber, T. St?nner, J. Varwig and D. Zhai, “Intuitive Visualization and Interactive Analysis of Pareto Sets Applied on Production Engineering,” In: A. Yang, Y. Shan and L. Bui, Eds., Success in Evolutionary Computation, Springer, Berlin/Heidelberg, 2008, pp. 189-214.
[25] P. Kersting and A. Zabel, “Optimizing NC-Tool Paths for Simultaneous Five-Axis Milling Based on Multi-Population Multi-Objective Evolutionary Algorithms,” Advances in Engineering Software, Vol. 40, No. 6, 2009, pp. 452463. doi:10.1016/j.advengsoft.2008.04.013
[26] P. Kersting and D. Biermann, “Simulation Concept for Predicting Workpiece Vibrations in Five-Axis Milling,” Machining Science and Technology, Vol. 13, No. 2, 2009, pp. 196-209. doi:10.1080/10910340903005039
[27] T. Surmann and D. Enk, “Simulation of Milling Tool Vibration Trajectories along Changing Engagement Conditions,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 9, 2007, pp. 1442-1448. doi:10.1016/j.ijmachtools.2006.09.030
[28] J. D. Foley, A. Van Dam, S. K. Feiner and J. F. Hughes, “Computer Graphics, Principles and Practice,” AddisonWesley Professional, 1995.
[29] K. Weinert and T. Surmann, “Geometric Simulation of the Milling Process for Free Formed Surfaces,” In: Simulation Aided Offline Process Design and Optimization in Manufacturing Sculptured Surfaces, 2003, pp. 21-30.
[30] O. Kienzle, “Die Bestimmung von Kr?ften und Leistungen an Spanenden Werkzeugen und Werkzeugmaschinen,” VDI-Z, Vol. 94, No. 11, 1952, pp. 299-305

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.