Resting EEG Activity and Ovarian Hormones as Predictors of Depressive Symptoms in Postmenopausal Women without a Diagnosis of Major Depression


The aim of this study was to examine the effects of depressive symptoms on resting EEG and their corre- lation with endogenous hormone levels in postmenopausal women without a diagnosis of major depress- sion. Fifty postmenopausal women aged 48 to 60 years were assessed for depressive symptoms using the Beck Depression Inventory. EEG activity was recorded during rest with eyes closed in 23 participants with minimal and 27 with moderate depressive symptoms. Relative power for delta, theta, alpha1, alpha2, beta1 and beta2 were analyzed and compared between women with minimal and moderate depressive symptoms. Hormonal levels of estrone, estradiol, progesterone, follicle-stimulating hormone and lu- teinizing hormone were obtained and correlated with the EEG parameters. The women with moderate de- pressive symptoms showed more relative alpha1power (p = .01) and less relative beta 2 power (p = .03). Relative theta and alpha2 power, estradiol levels and menopausal years were predictors of depressive symptoms. Progesterone was negatively correlated with the theta band (p = .005) and positively correlated with the beta2 band (p = .02) in women with moderate depressive symptoms. Estrone was negatively cor- related with the alpha2 band (p = .05), and estradiol was positively correlated with the theta band (p = .02) and negatively correlated with the beta2 band (p = .05) in women with minimal depressive symptoms. These findings suggest that slow and fast EEG relative power, menopausal status and estrogen levels pre- dict depressive symptoms and that progesterone is related with moderate depression.

Share and Cite:

Solís-Ortiz, S. , Pérez-Luque, E. & Pacheco-Zavala, M. (2012). Resting EEG Activity and Ovarian Hormones as Predictors of Depressive Symptoms in Postmenopausal Women without a Diagnosis of Major Depression. Psychology, 3, 834-840. doi: 10.4236/psych.2012.329126.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Adler, G., Bramesfeld, A., & Jajcevic, A. (1999). Mild cognitive impairment in old-age depression is associated with increased EEG slow-wave power. Neuropsychobiology 40, 218-222. doi:10.1159/000026623.
[2] Allen, J. J., & Cohen, M. X. (2010). Deconstructing the “resting” state: Exploring the temporal dynamics of frontal alpha asymmetry as an endophenotype for depression. Frontiers in Human Neuroscience 4, 232. doi:10.3389/fnhum.2010.00232
[3] Alper, K. (1995). Quantitative EEG and evoked potentials in adult psychiatry. In J. Panksepp (Ed.), Advances on biological psychiatry (pp. 65-112). Greenwich, CT: JAI Press.
[4] American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders text revision. Washington, DC: American Psychiatric Association.
[5] Amin, Z., Mason, G. F., Cavus, I., Krystal, J. H., Rothman, D. L., & Epperson, C. N. (2006). The interaction of neuroactive steroids and GABA in the development of neuropsychiatric disorders in women. Pharmacology, Biochemistry and Behavior 56, 635-638. doi:10.1016/j.pbb.2006.06.007
[6] Beck, A. T., & Steer, R. A. (1993). Beck depression inventory. San Antonio, TX: The Psychological Corporation.
[7] Begi?, D., Popovi?-Knapi?, V., Grubi?in, J., Kosanovi?-Raja?i?, B., Filip?i?, I., Telarovi?, I., & Jakovljevi?, M. (2011). Quantitative electroencephalography in schizophrenia and depression. Psychiatria Danubina, 23, 355-362.
[8] Birkhauser, M. (2002). Depression, menopause and estrogens: Is there a correlation? Maturitas, 41, S3-S8.
[9] doi:10.1016/S0378-5122(02)00009-9
[10] Bixo, M., Andersson, A., Winblad, B., Purdy, R. H., & B?ckstr?m, T. (1997). Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hy- droxy-5alpha-pregnane-20-one in specific regions of the human fe- male brain in different endocrine states. Brain Research, 764, 173- 178. doi:10.1016/S0006-8993(97)00455-1
[11] Brody, A. L., Barsom, M. W., Bota, R. G., & Saxena, S. (2001). Prefrontal-subcortical and limbic circuit mediation of major depressive disorder. Seminars in Clinical Neuropsychiatry, 6, 102-112. doi:10.1053/scnp.2001.21837
[12] Bromberger, J. T., & Kravitz, H. M. (2011). Mood and menopause: Findings from the Study of Women’s Health Across the Nation (SWAN) over 10 years. Obstetrics and Gynecology Clinics of North America, 38, 609-625. doi:10.1017/S003329171100016X
[13] Bromberger, J. T., Kravitz, H. M., Chang, Y. F., Cyranowski, J. M., Brown, C., & Matthews, K. A. (2011). Major depression during and after the menopausal transition: Study of Women’s Health across the Nation (SWAN). Psychological Medicine, 41, 1879-1888. doi:10.1017/S003329171100016X
[14] Debener, S., Beauducel, A., Nessler, D., Brocke, B., Heilemann, H., & Kayser, J. (2000). Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically de- pressed patients. Neuropsychobiology, 41, 31-37. doi:10.1159/000026630
[15] Dennerstein, L., & Soares, C. N. (2008). The unique challenges of managing depression in mid-life women. World Psychiatry, 7, 137- 142.
[16] Deslandes, A. C., De Moraes, H., Pompeu, F. A., Ribeiro, P., Cagy, M., Capit?o, C., & Laks, J. (2008). Electroencephalographic frontal asymmetry and depressive symptoms in the elderly. Biological Psychol- ogy, 79, 317-322. doi:10.1016/j.biopsycho.2008.07.008
[17] Eser, D., Schüle, C., Baghai, T. C., Romeo, E., Uzunov, D. P., & Rup- precht, R. (2006). Neuroactive steroids and affective disorders. Pharmacology, Biochemistry and Behavior, 84, 656-666. doi:10.1016/j.pbb.2006.05.020
[18] Fink, G., Sumner, B. E., Rosie, R., Grace, O., & Quinn, J. P. (1996). Estrogen control of central neurotransmission: Effect on mood, men- tal state, and memory. Cellular and Molecular Neurobiology, 16, 325-344. doi:10.1007/BF02088099
[19] Freeman, E. W. (2010). Associations of depression with the transition to menopause. Menopause, 17, 823-827. doi:10.1097/gme.0b013e3181db9f8b
[20] Freeman, E. W., Sammel, M. D., Lin, H., & Nelson, D. B. (2006). As- sociations of hormones and menopausal status with depressed mood in women with no history of depression. Archives of General Psychiatry, 63, 375-382. doi:10.1001/archpsyc.63.4.375
[21] Freeman, E. W., Sammel, M. D., Liu, L., Gracia, C. R., Nelson, D. B., & Hollander, L. (2004). Hormones and menopausal status as predictors of depression in women in transition to menopause. Archives of General Psychiatry, 61, 62-70. doi:10.1001/archpsyc.61.1.62
[22] Frey, B. N., Lord, C., & Soares, C. N. (2008). Depression during men- opausal transition. Menopause International, 14, 123-128. doi:10.1258/mi.2008.008019
[23] Grin-Yatsenko, V. A., Baas, I., Ponomarev, V. A., & Kropotov, J. D. (2010). Independent component approach to the analysis of EEG recordings at early stages of depressive disorders. Clinical Neurophysiology, 121, 281-289. doi:10.1016/j.clinph.2009.11.015
[24] Harlow, B. L., & Abraham, M. E. (1999). Depression in menopause. In D. B. Seifer, & E. A. Kennard (Eds.), Menopause: Endocrinology and Management (pp. 111-124). U. S. A: Humana Press.
[25] Henriques, J. B., & Davidson, R. J. (1991). Left frontal hypoactivation in depression. Journal of Abnormal Psychology, 100, 535-545. doi:10.1037/0021-843X.100.4.535
[26] Herrington, J. D., Heller, W., Mohanty, A., Engels, A. S., Banich, M. T., Webb, A. G., & Miller, G. A. (2010). Localization of asymmetric brain function in emotion and depression. Psychophysiology, 47, 442-454. doi:10.1111/j.1469-8986.2009.00958.x
[27] Joffe, H., & Cohen, L. S. (1998). Estrogen, serotonin, and mood dis- turbance: Where is the therapeutic bridge? Biological Psychiatry, 44, 798-811. doi:10.1016/S0006-3223(98)00169-3
[28] John, E. R., & Prichep, L. S. (1993). Principles of neurometric analysis of EEG and evoked potentials. In E. Niedermeyer, & F. H. Lopes Da Silva (Eds.), Electroencephalography Basic principles, clinical applications and related fields (pp. 989-1003). Baltimore, MD: Wil- liams & Wilkins.
[29] Jurado, S., Villegas, M. E., Méndez, L., Rodríguez, F., Loperena, V., & Varela, R. (1998). La estandarización del inventario de la depresión de Beck, para los residentes de la ciudad de México. Salud Mental, 21, 36-38.
[30] Kaura, V., Ingram, C. D., Gartside, S. E., Young, A. H., & Judge, S. J. (2007). The progesterone metabolite allopregnanolone potentiates GABA(A) receptor-mediated inhibition of 5-HT neuronal activity. European Neuropsychopharmacology, 17, 108-115. doi:10.1016/j.euroneuro.2006.02.006
[31] Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory con- trol mirrored in brain oscillations. Neuroscience and Biobehavioral Reviews, 31, 377-395. doi:10.1016/j.neubiorev.2006.10.004
[32] Kwon, J. S., Youn, T., & Jung, H. Y. (1996). Right hemisphere abnormalities in major depression: Quantitative electroencephalographic findings before and after treatment. Journal of Affective Disorders, 40, 169-173. doi:10.1016/0165-0327(96)00057-2
[33] Lasiuk, G. C., & Hegadoren, K. M. (2007). The effects of estradiol on central serotonergic systems and its relationship to mood in women. Biological Research for Nursing, 9, 147-160. doi:10.1177/1099800407305600
[34] Lebowitz, D. B., Pearson, J. L., & Schneider, L. S. (1997). Diagnosis and treatment of depression in late life. Consensus Statement update. The Journal of the American Medical Association, 278, 1186-1190. doi:10.1001/jama.1997.03550140078045
[35] Maartens, L. W., Knottnerus, J. A., & Pop, V. J. (2002). Menopausal transition and increased depressive symptomatology: A community based prospective study. Maturitas, 42, 195-200. doi:10.1016/S0378-5122(02)00038-5
[36] MacQueen, G., & Chokka, P. (2004). Special issues in the management of depression in women. Canadian Journal of Psychiatry, 49, 27S- 40S.
[37] Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L., & Paul, S. M. (1986). Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science, 232, 1004-1007. doi:10.1126/science.2422758
[38] McEwen, B. S. (2001). Invited review: Estrogens effects on the brain: multiple sites and molecular mechanisms. Journal of Applied Physiology, 91, 2785-2801.
[39] Meldrum, D. R., Davidson, B. J., Tataryn, IV., & Judd, H. L. (1981). Changes in circulating steroids with aging in postmenopausal women. Obstetric and Gynecology, 57, 624-628.
[40] Monakhov, K., & Perris, C. (1980). Neurophysiological correlates of depressive symptomatology. Neuropsychobiology, 6, 268-279. doi:10.1159/000117769
[41] Morgan, M. L., Witte, E. A., Cook, I. A., Leuchter, A. F., Abrams, M., & Siegman, B. (2005). Influence of age, gender, health status, and depression on quantitative EEG. Neuropsychobiology ,52, 71-76. doi:10.1159/000086608
[42] Niedermeyer, E. (1993). The normal EEG of the waking adult. In E. Niedermeyer, & F. Lopes Da Silva (Eds.), Electroencephalography. basic principles, clinical applications, and related fields (pp. 131- 152). Baltimore, MD: Williams & Wilkins.
[43] Osterlund, M. K., Keller, E., & Hurd, Y. L. (2000). The human forebrain has discrete estrogen receptor alpha messenger RNA expression: High levels in the amygdaloid complex. Neuroscience, 95, 333 -342. doi:10.1016/S0306-4522(99)00443-1
[44] Pizzagalli, D., Pascual-Marquí, R., Nitschke, J. B., Oakes, T. R., Larson, C. L., Abercrombie, & Davidson, R. J. (2001). Anterior cingulated activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. The American Journal of Psychiatry 158, 405-415. doi:10.1176/appi.ajp.158.3.405
[45] Pollock, V. E., & Schneider, L. S. (1990). Quantitative, waking EEG research on depression. Biological Psychiatry, 27, 757-780. doi:10.1016/0006-3223(90)90591-O
[46] Robichaud, M., & Debonnel, G. (2006). Allopregnanolone and ganaxolone increase the firing activity of dorsal raphe nucleus serotonergic neurons in female rats. The International Journal of Neuropsycho-pharmacolpgy, 9, 191-200. doi:10.1017/S146114570500595X
[47] Rubinow, D. R., Schmidt, P. J., & Roca, C. A. (1998). Estrogen-serotonin interactions: Implications for affective regulation. Biological Psychiatry, 44, 839-850. doi:10.1016/S0006-3223(98)00162-0
[48] Rupprecht, R., Hauser, C. A., Trapp, T., & Holsboer, F. (1996). Neurosteroids: Molecular mechanisms of action and psychopharmaco-logical significance. The Journal of Steroid Biochemistry and Molecular Biology, 56, 163-168. doi:10.1016/0960-0760(95)00233-2
[49] Ryan, J., Burger, H., Szoeke, C., Lehert, P., Ancelin, M. L., & Denner- stein, L. (2009). A prospective study of the association between en- dogenous hormones and depressive symptoms in postmenopausal women. Menopause, 16, 509-517. doi:10.1097/gme.0b013e31818d635f
[50] Rybaczyk, L. A., Bashaw, M. J., Pathak, D. R., Moody, S. M., Gilders, R. M., & Holzschu, D. L. (2005). An overlooked connection: Serotonergic mediation of estrogen-related physiology and pathology. BMC Womens Health, 5, 12. doi:10.1186/1472-6874-5-12
[51] Saletu, B. (1993). Neurophysiological and psychometric evaluation of central effects of classic and novel antidepressants. EEG mapping in depression. In J. Mendlewicz, N. Brunello, S. Z. Langer, & G. Racagni (Eds.), New pharmacological approaches to the therapy of depressive disorders. International Academy for Biomedical and Drugs research (pp. 48-61). Basel, Paris, London, New York, Singapore, Tokyo, Sydney: Karger.
[52] Saletu, B., Anderer, P., & Saletu-Zyhlarz, G. M. (2010). EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression. Clinical EEG and Neuroscience, 41, 203-210. doi:10.1177/155005941004100407
[53] Saletu, B., Brandst?tter, N., Metka, M., Stamenkovic, M., Anderer, P., Semlitsch, H. V., & Koll, B. (1996). Hormonal, syndromal and EEG mapping studies in menopausal syndrome patients with and without depression as compared with controls. Maturitas, 23, 91-105. doi:10.1016/0378-5122(95)00946-9
[54] Smith, L. (1996). Causality, menopause and depression: A critical review of the literature. British Medical Journal, 313, 1229-1232. doi:10.1136/bmj.313.7067.1229
[55] Soares, C. N. (2010). Can depression be a menopause-associated risk? BMC Medical Research Methodology, 8, 79.
[56] Soares, C. N., & Zitek, B. (2008). Reproductive hormone sensitivity and risk for depression across the female life cycle: A continuum of vulnerability? Journal of Psychiatry and Neuroscience, 33, 331-343.
[57] Steriade, M. (1993). Cellular substrates of brain rhythms. In E. Niedermeyer, & F. Lopes Da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 27-62). Baltimore, MD: Williams & Wilkins.
[58] Studd, J., & Panay, N. (2004). Hormones and depression in women. Climacteric, 7, 338-346. doi:10.1080/13697130400012262
[59] Vesco, K. K., Haney, E. M., Humphrey, L., Fu, R., & Nelson, H. D. (2007). Influence of menopause on mood: A systematic review of cohort studies. Climacteric, 10, 448-465. doi:10.1080/13697130701611267
[60] Wang, M. (2011). Neurosteroids and GABA-A receptor function. Frontiers in Endocrinology, 2, 44. doi:10.3389/fendo.2011.00044
[61] Woods, N. F., Smith-DiJulio, K., Percival, D. B., Tao, E. Y., Mariella, A., & Mitchell, S. (2008). Depressed mood during the menopausal transition and early postmenopause: Observations from the Seattle Midlife Women’s Health Study. Menopause, 15, 223-232. doi:10.1097/gme.0b013e3181450fc2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.