JNK-Mediated FOXO Expression Plays a Critical Role in EGFR Tyrosine Kinase Inhibitor-Induced BIM Expression and Apoptosis

Abstract

BIM, a key proapoptotic member of the BCL-2 family of proteins, is essential for apoptosis triggered by tyrosine kinase inhibitors (TKIs) of the epidermal growth factor receptor (EGFR). However, the precise molecular mechanism by which EGFR-TKIs induce BIM expression has remained unclear. A previous study of ours showed that the activetion of c-Jun NH2-terminal kinase (JNK) is critical for the TKI-induced apoptosis in PC-9 cells, a gefitinib-sensitive human NSCLC cell line. In this study, we therefore examined the effect of JNK activation on BIM expression and further investigated the mechanism responsible for TKI-induced apoptosis in PC-9 cells. Northern blotting analysis revealed that the TKI AG1478 induced a substantial increase in the level of BIM mRNA. However, this TKI-induced increase was not observed in dominant-negative JNK overexpressing cell line J12A5 or in the TKI-resistant cell line HP-5R, in which JNK is not activated in response to AG1478. Therefore, JNK activation was correlated with the up-regulation of BIM expression. BIM is known to be a downstream target of forkhead box protein O (FOXO) transcription factors. Immunoblot analysis indicated that the levels of FOXO1, FOXO3a, and FOXO4 transcription factors increased after AG1478 treatment of PC-9 cells but that they were not increased in either J12A5 or HP-5R cells, indicating that FOXO was increased in PC-9 cells through JNK activation. FOXO1 knockdown in PC-9 cells decreased EGFR-TKI-induced BIM expression and apoptosis. These findings provide evidence that JNK activation and subsequent increased FOXO expression play a critical role in EGFR-TKI-induced BIM expression and apoptosis.

Share and Cite:

K. Takeuchi, A. Viet, K. Kawasaki, K. Nishio and F. Ito, "JNK-Mediated FOXO Expression Plays a Critical Role in EGFR Tyrosine Kinase Inhibitor-Induced BIM Expression and Apoptosis," Journal of Cancer Therapy, Vol. 3 No. 4A, 2012, pp. 424-434. doi: 10.4236/jct.2012.324055.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. S. Salomon, R. Brandt, F. Ciardiello and N. Normanno, “Epidermal Growth Factor-Related Peptides and Their Receptors in Human Malignancies,” Critical Reviews in Oncology/Hematology, Vol. 19, No. 3, 1995, pp. 183-232. doi:10.1016/1040-8428(94)00144-I
[2] S. B. Fox, K. Smith, J. Hollyer, M. Greenall, D. Hastrich and A. L. Harris, “The Epidermal Growth Factor Receptor as a Prognostic Marker: Results of 370 Patients and Review of 3009 Patients,” Breast Cancer Research and Treatment, Vol. 29, No. 1, 1994, pp. 41-49. doi:10.1007/BF00666180
[3] T. A. Libermann, H. R. Nusbaum, N. Razon, R. Kris, I. Lax, H. Soreq, N. Whittle, M. D. Waterfield, A. Ullrich and J. Schlessinger, “Amplification, Enhanced Expression and Possible Rearrangement of EGF Receptor Gene in Primary Human Brain Tumours of Glial Origin,” Nature, Vol. 313, No. 5998, 1985, pp. 144-147. doi:10.1038/313144a0
[4] A. J. Wong, S. H. Bigner, D. D. Bigner, K. W. Kinzler, S. R. Hamilton and B. Vogelstein, “Increased Expression of the Epidermal Growth Factor Receptor Gene in Malignant Gliomas Is Invariably Associated with Gene Amplification,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 84, No. 19, 1987, pp. 6899-6903. doi:10.1073/pnas.84.19.6899
[5] A. W. Burgess, H. S. Cho, C. Eigenbrot, K. M. Ferguson, T. P. Garrett, D. J. Leahy, M. A. Lemmon, M. X. Sliwkowski, C. W. Ward and S. Yokoyama, “An Open- and-Shut Case? Recent Insights into the Activation of EGF/ErbB Receptors,” Molecular Cell, Vol. 12, No. 3, 2003, pp. 541-552. doi:10.1016/S1097-2765(03)00350-2
[6] A. Citri and Y. Yarden, “EGF-ERBB Signalling: Towards the Systems Level,” Nature Reviews Molecular Cell Biology, Vol. 7, No. 7, 2006, pp. 505-516. doi:10.1038/nrm1962
[7] R. S. Herbst and P. A. Bunn Jr., “Targeting the Epidermal Growth Factor Receptor in Non-Small Cell Lung Cancer,” Clinical Cancer Research, Vol. 9, No. 16, 2003, pp. 5813-5824.
[8] A. F. Gazdar, H. Shigematsu, J. Herz and J. D. Minna, “Mutations and Addiction to EGFR: The Achilles ‘Heal’ of Lung Cancers?” Trends in Molecular Medicine, Vol. 10, No. 10, 2004, pp. 481-486. doi:10.1016/j.molmed.2004.08.008
[9] K. Nakagawa, T. Tamura, S. Negoro, S. Kudoh, N. Yamamoto, N. Yamamoto, K. Takeda, H. Swaisland, I. Nakatani, M. Hirose, R. P. Dong and M. Fukuoka, “Phase I Pharmacokinetic Trial of the Selective Oral Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Gefitinib (‘Iressa’, ZD1839) in Japanese Patients with Solid Malignant Tumors,” Annals of Oncology, Vol. 14, No. 6, 2003, pp. 922-930. doi:10.1093/annonc/mdg250
[10] T. J. Lynch, D. W. Bell, R. Sordella, S. Gurubhagavatula, R. A. Okimoto, B. W. Brannigan, P. L. Harris, S. M. Haserlat, J. G. Supko, F. G. Haluska, D. N. Louis, D. C. Christiani, J. Settleman and D. A. Haber, “Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib,” The New England Journal of Medicine, Vol. 350, No. 21, 2004, pp. 2129-2139. doi:10.1056/NEJMoa040938
[11] J. G. Paez, P. A. Janne, J. C. Lee, S. Tracy, H. Greulich, S. Gabriel, P. Herman, F. J. Kaye, N. Lindeman, T. J. Boggon, K. Naoki, H. Sasaki, Y. Fujii, M. J. Eck, W. R. Sellers, B. E. Johnson and M. Meyerson, “EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy,” Science, Vol. 304, No. 5676, 2004, pp. 1497-1500. doi:10.1126/science.1099314
[12] W. Pao, V. Miller, M. Zakowski, J. Doherty, K. Politi, I. Sarkaria, B. Singh, R. Heelan, V. Rusch, L. Fulton, E. Mardis, D. Kupfer, R. Wilson, M. Kris and H. Varmus, “EGF Receptor Gene Mutations Are Common in Lung Cancers from ‘Never Smokers’ and Are Associated with Sensitivity of Tumors to Gefitinib and Erlotinib,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 36, 2004, pp. 13306-13311. doi:10.1073/pnas.0405220101
[13] M. L. Janmaat, F. A. Kruyt, J. A. Rodriguez and G. Giaccone, “Response to Epidermal Growth Factor Receptor Inhibitors in Non-Small Cell Lung Cancer Cells: Limited Antiproliferative Effects and Absence of Apoptosis Associated with Persistent Activity of Extracellular Signal-Regulated Kinase or Akt Kinase Pathways,” Clinical Cancer Research, Vol. 9, No. 6, 2003, pp. 2316-2326.
[14] M. Ono, A. Hirata, T. Kometani, M. Miyagawa, S. Ueda, H. Kinoshita, T. Fujii and M. Kuwano, “Sensitivity to Gefitinib (Iressa, ZD1839) in Non-Small Cell Lung Cancer Cell Lines Correlates with Dependence on the Epidermal Growth Factor (EGF) Receptor/Extracellular Signal-Regulated Kinase 1/2 and EGF Receptor/Akt Pathway for Proliferation,” Molecular Cancer Therapeutics, Vol. 3, No. 4, 2004, pp. 465-472.
[15] K. Takeuchi and F. Ito, “EGF Receptor in Relation to Tumor Development: Molecular Basis of Responsiveness of Cancer Cells to EGFR-Targeting Tyrosine Kinase Inhibitors,” The FEBS Journal, Vol. 277, No .2, 2010, pp. 316-326.
[16] J. E. Chipuk, L. Bouchier-Hayes and D. R. Green, “Mitochondrial Outer Membrane Permeabilization during Apoptosis: The Innocent Bystander Scenario,” Cell Death and Differentiation, Vol. 13, No. 8, 2006, pp. 1396-1402. doi:10.1038/sj.cdd.4401963
[17] L. O’Connor, A. Strasser, L. A. O’Reilly, G. Hausmann, J. M. Adams, S. Cory and D. C. Huang, “Bim: A Novel Member of the Bcl-2 Family That Promotes Apoptosis,” The EMBO Journal, Vol. 17, No. 2, 1998, pp. 384-395. doi:10.1093/emboj/17.2.384
[18] H. Puthalakath, D. C. Huang, L. A. O’Reilly, S. M. King and A. Strasser, “The Proapoptotic Activity of the Bcl-2 Family Member Bim Is Regulated by Interaction with the Dynein Motor Complex,” Molecular Cell, Vo. 3, No. 3, 1999, pp. 287-296. doi:10.1016/S1097-2765(00)80456-6
[19] M. Marani, T. Tenev, D. Hancock, J. Downward and N. R. Lemoine, “Identification of Novel Isoforms of the BH3 Domain Protein Bim Which Directly Activate Bax to Trigger Apoptosis,” Molecular and Cellular Biology, Vol. 22, No. 11, 2002, pp. 3577-3589. doi:10.1128/MCB.22.11.3577-3589.2002
[20] D. B. Costa, B. Halmos, A. Kumar, S. T. Schumer, M. S. Huberman, T. J. Boggon, D. G. Tenen and S. Kobayashi, “BIM Mediates EGFR Tyrosine Kinase Inhibitor-Induced Apoptosis in Lung Cancers with Oncogenic EGFR Mutations,” PLoS Medicine, Vol. 4, No. 10, 2007, pp. 1669-1679. doi:10.1371/journal.pmed.0040315
[21] M. S. Cragg, J. Kuroda, H. Puthalakath, D. C. Huang and A. Strasser, “Gefitinib-Induced Killing of NSCLC Cell Lines Expressing Mutant EGFR Requires BIM and Can Be Enhanced by BH3 Mimetics,” PLoS Medicine, Vol. 4, No. 10, 2007, pp. 1681-1689. doi:10.1371/journal.pmed.0040316
[22] Y. Gong, R. Somwar, K. Politi, M. Balak, J. Chmielecki, X. Jiang and W. Pao, “Induction of BIM Is Essential for Apoptosis Triggered by EGFR Kinase Inhibitors in Mutant EGFR-Dependent Lung Adenocarcinomas,” PLoS Medicine, Vol. 4, No. 10, 2007, pp. 1655-1668. doi:10.1371/journal.pmed.0040294
[23] R. Ley, K. Balmanno, K. Hadfield, C. Weston and S. J. Cook, “Activation of the ERK1/2 Signaling Pathway Promotes Phosphorylation and Proteasome-Dependent Degradation of the BH3-Only Protein, Bim,” Journal of Biological Chemistry, Vol. 278, No. 21, 2003, pp. 18811-18816. doi:10.1074/jbc.M301010200
[24] K. Takeuchi, T. Shin-ya, K. Nishio and F. Ito, “Mitogen-Activated Protein Kinase Phosphatase-1 Modulated JNK Activation Is Critical for Apoptosis Induced by Inhibitor of Epidermal Growth Factor Receptor-Tyrosine Kinase,” The FEBS Journal, Vol. 276, No. 5, 2009, pp. 1255-1265. doi:10.1111/j.1742-4658.2008.06861.x
[25] K. Takeuchi, Y. Motoda and F. Ito, “Role of Transcription Factor Activator Protein 1 (AP1) in Epidermal Growth Factor-Mediated Protection against Apoptosis Induced by a DNA-Damaging Agent,” The FEBS Journal, Vol. 273, No. 16, 2006, pp. 3743-3755. doi:10.1111/j.1742-4658.2006.05377.x
[26] F. Luciano, A. Jacquel, P. Colosetti, M. Herrant, S. Cagnol, G. Pages and P. Auberger, “Phosphorylation of Bim-EL by Erk1/2 on Serine 69 Promotes Its Degradation via the Proteasome Pathway and Regulates Its Proapoptotic Function,” Oncogene, Vol. 22, No. 43, 2003, pp. 6785-6793. doi:10.1038/sj.onc.1206792
[27] R. Ley, K. E. Ewings, K. Hadfield and S. J. Cook, “Regulatory Phosphorylation of Bim: Sorting Out the ERK from the JNK,” Cell Death and Differentiation, Vol. 12, No. 8, 2005, pp. 1008-1014. doi:10.1038/sj.cdd.4401688
[28] P. F. Dijkers, R. H. Medema, J. W. Lammers, L. Koenderman and P. J. Coffer, “Expression of the Pro-Apoptotic Bcl-2 Family Member Bim Is Regulated by the Forkhead Transcription Factor FKHR-L1,” Current Biology, Vol. 10, No. 19, 2000, pp. 1201-1204. doi:10.1016/S0960-9822(00)00728-4
[29] E. L. Greer and A. Brunet, “FOXO Transcription Factors at the Interface between Longevity and Tumor Suppression,” Oncogene, Vol. 24, No. 50, 2005, pp. 7410-7425. doi:10.1038/sj.onc.1209086
[30] Z. Fu and D. J. Tindall, “FOXOs, Cancer and Regulation of Apoptosis,” Oncogene, Vol. 27, No. 16, 2008, pp. 2312-2319. doi:10.1038/onc.2008.24
[31] M. Stahl, P. F. Dijkers, G. J. Kops, S. M. Lens, P. J. Coffer, B. M. Burgering and R. H. Medema, “The Forkhead Transcription Factor FoxO Regulates Transcription of p27Kip1 and Bim in Response to IL-2,” Journal of Immunology, Vol. 168, No. 10, 2002, pp. 5024-5031.
[32] J. Gilley, P. J. Coffer and J. Ham, “FOXO Transcription Factors Directly Activate Bim Gene Expression and Promote Apoptosis in Sympathetic Neurons,” Journal of Cell Biology, Vol. 162, No. 4, 2003, pp. 613-622. doi:10.1083/jcb.200303026
[33] A. Sunters, S. Fernández de Mattos, M. Stahl, J. J. Brosens, G. Zoumpoulidou, C. A. Saunders, P. J. Coffer, R. H. Medema, R. C. Coombes and E. W. Lam, “FoxO3a Transcriptional Regulation of Bim Controls Apoptosis in Paclitaxel-Treated Breast Cancer Cell Lines,” The Journal of Biological Chemistry, Vol. 278, No. 50, 2003, pp. 49795-49805. doi:10.1074/jbc.M309523200
[34] A. Essafi, S. Fernández de Mattos, Y. A. Hassen, I. Soeiro, G. J. Mufti, N. S. Thomas, R. H. Medema and E. W. Lam, “Direct Transcriptional Regulation of Bim by FoxO3a Mediates STI571-Induced Apoptosis in Bcr-Abl-Expressing Cells,” Oncogene, Vol. 24, No. 14, 2005, pp. 2317-2329. doi:10.1038/sj.onc.1208421
[35] R. Ley, K. E. Ewings, K. Hadfield, E. Howes, K. Balmanno and S. J. Cook, “Extracellular Signal-Regulated Kinases 1/2 Are Serum-Stimulated ‘Bim(EL) Kinases’ That Bind to the BH3-Only Protein Bim(EL) Causing Its Phosphorylation and Turnover,” The Journal of Biological Chemistry, Vol. 279, No. 10, 2004, pp. 8837-8847. doi:10.1074/jbc.M311578200
[36] R. Ley, K. Hadfield, E. Howes and S. J. Cook, “Identification of a DEF-Type Docking Domain for Extracellular Signal-Regulated Kinases 1/2 That Directs Phosphorylation and Turnover of the BH3-Only Protein BimEL,” The Journal of Biological Chemistry, Vol. 280, No. 18, 2005, pp. 17657-17663. doi:10.1074/jbc.M412342200
[37] N. Galili, R. J. Davis, W. J. Fredericks, S. Mukhopadhyay, F. J. Rauscher III, B. S. Emanuel, G. Rovera and F. G. Barr, “Fusion of a Fork Head Domain Gene to PAX3 in the Solid Tumour Alveolar Rhabdomyosarcoma,” Nature Genetics, Vol. 5, No. 3, 1993, pp. 230-235. doi:10.1038/ng1193-230
[38] M. J. Anderson, C. S. Viars, S. Czekay, W. K. Cavenee and K. C. Arden, “Cloning and Characterization of Three Human Forkhead Genes That Comprise an FKHR-Like Gene Subfamily,” Genomics, Vol. 47, No. 2, 1998, pp. 187-199. doi:10.1006/geno.1997.5122
[39] J. Hillion, M. Le Coniat, P. Jonveaux, R. Berger and O. A. Bernard, “AF6q21, a Novel Partner of the MLL Gene in t(6;11)(q21;q23), Defines a Forkhead Transcriptional Factor Subfamily,” Blood, Vol. 90, No. 9, 1997, pp. 3714- 3719.
[40] A. Borkhardt, R. Repp, O. A. Haas, T. Leis, J. Harbott, J. Kreuder, J. Hammermann, T. Henn and F. Lampert, “Cloning and Characterization of AFX, the Gene That Fuses to MLL in Acute Leukemias with a t(X;11)(q13;q23),” Oncogene, Vol. 14, No. 2, 1997, pp. 195-202.
[41] A. Brunet, A. Bonni, M. J. Zigmond, M. Z. Lin, P. Juo, L. S. Hu, M. J. Anderson, K. C. Arden, J. Blenis and M. E. Greenberg, “Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor,” Cell, Vol. 96, No. 6, 1999, pp. 857-868. doi:10.1016/S0092-8674(00)80595-4
[42] D. R. Plas and C. B. Thompson, “Akt Activation Promotes Degradation of Tuberin and FOXO3a via the Proteasome,” The Journal of Biological Chemistry, Vol. 278, No. 14, 2003, pp. 12361-12366. doi:10.1074/jbc.M213069200
[43] J. Y. Yang, C. S. Zong, W. Xia, H. Yamaguchi, Q. Ding, X. Xie, J. Y. Lang, C. C. Lai, C. J. Chang, W. C. Huang, H. Huang, H. P. Kuo, D. F. Lee, L. Y. Li, H. C. Lien, X. Cheng, K. J. Chang, C. D. Hsiao, F. J. Tsai, C. H. Tsai, A. A. Sahin, W. J. Muller, G. B. Mills, D. Yu, G. N. Hortobagyi and M. C. Hung, “ERK Promotes Tumorigenesis by Inhibiting FOXO3a via MDM2-Mediated Degradation,” Nature Cell Biology, Vol. 10, No. 2, 2008, pp. 138-148. doi:10.1038/ncb1676
[44] M. C. Hu, D. F. Lee, W. Xia, L. S. Golfman, F. Ou-Yang, J. Y. Yang, Y. Zou, S. Bao, N. Hanada, H. Saso, R. Kobayashi and M. C. Hung, “IkappaB Kinase Promotes Tumorigenesis through Inhibition of Forkhead FOXO3a,” Cell, Vol. 117, No. 2, 2004, pp. 225-237. doi:10.1016/S0092-8674(04)00302-2
[45] A. Brunet, F. Kanai, J. Stehn, J. Xu, D. Sarbassova, J. V. Frangioni, S. N. Dalal, J. A. DeCaprio, M. E. Greenberg and M. B. Yaffe, “14-3-3 Transits to the Nucleus and Participates in Dynamic Nucleocytoplasmic Transport,” The Journal of Cell Biology, Vol. 156, No. 5, 2002, pp. 817-828. doi:10.1083/jcb.200112059
[46] L. P. Van Der Heide, M. F. Hoekman and M. P. Smidt, “The Ins and Outs of FoxO Shuttling: Mechanisms of FoxO Translocation and Transcriptional Regulation,” The Biochemical Journal, Vol. 380, No. 2, 2004, pp. 297-309. doi:10.1042/BJ20040167
[47] X. Wang, W. R. Chen and D. Xing, “A Pathway from JNK through Decreased ERK and Akt Activities for FOXO3a Nuclear Translocation in Response to UV Irradiation,” Journal of Cellular Physiology, Vol. 227, No. 3, 2012, pp. 1168-1178. doi:10.1002/jcp.22839
[48] A. Sunters, P. A. Madureira, K. M. Pomeranz, M. Aubert, J. J. Brosens, S. J. Cook, B. M. Burgering, R. C. Coombes and E. W. Lam, “Paclitaxel-Induced Nuclear Translo-Cation of FOXO3a in Breast Cancer Cells Is Mediated by c-Jun NH2-Terminal Kinase and Akt,” Cancer Research, Vol. 66, No. 1, 2006, pp. 212-220. doi:10.1158/0008-5472.CAN-05-1997
[49] M. A. Essers, S. Weijzen, A. M. de Vries-Smits, I. Saarloos, N. D. de Ruiter, J. L. Bos and B. M. Burgering, “FOXO Transcription Factor Activation by Oxidative Stress Mediated by the Small GTPase Ral and JNK,” The EMBO Journal, Vol. 23, No. 24, 2004, pp. 4802-4812. doi:10.1038/sj.emboj.7600476
[50] M. Potente, C. Urbich, K. Sasaki, W. K. Hofmann, C. Heeschen, A. Aicher, R. Kollipara, R. A. DePinho, A. M. Zeiher and S. Dimmeler, “Involvement of Foxo Transcription Factors in Angiogenesis and Postnatal Neovascularization,” The Journal of Clinical Investigation, Vol. 115, No. 9, 2005, pp. 2382-2392. doi:10.1172/JCI23126
[51] K. Okamoto, I. Okamoto, W. Okamoto, K. Tanaka, K. Takezawa, K. Kuwata, H. Yamaguchi, K. Nishio and K. Nakagawa, “Role of Survivin in EGFR Inhibitor-Induced Apoptosis in Non-Small Cell Lung Cancers Positive for EGFR Mutations,” Cancer Research, Vol. 70, No. 24, 2010, pp. 10402-10410. doi:10.1158/0008-5472.CAN-10-2438
[52] W. Pao, V. A. Miller, K. A. Politi, G. J. Riely, R. Somwar, M. F. Zakowski, M. G. Kris and H. Varmus, “Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain,” PLoS Medicine, Vol. 2, No. 3, 2005, pp. 225-235. doi:10.1371/journal.pmed.0020073
[53] J. Bean, C. Brennan, J. Y. Shih, G. Riely, A. Viale, L. Wang, D. Chitale, N. Motoi, J. Szoke, S. Broderick, M. Balak, W. C. Chang, C. J. Yu, A. Gazdar, H. Pass, V. Rusch, W. Gerald, S. F. Huang, P. C. Yang, V. Miller, M. Ladanyi, C. H. Yang and W. Pao, “MET Amplification Occurs with or without T790M Mutations in EGFR Mutant Lung Tumors with Acquired Resistance to Gefitinib or Erlotinib,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, No. 5, 2007, pp. 20932-20937.
[54] J. A. Engelman, K. Zejnullahu, T. Mitsudomi, Y. Song, C. Hyland, J. O. Park, N. Lindeman, C. M. Gale, X. Zhao, J. Christensen, T. Kosaka, A. J. Holmes, A. M. Rogers, F. Cappuzzo, T. Mok, C. Lee, B. E. Johnson, L. C. Cantley and P. A. Janne, “MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling,” Science, Vol. 316, No. 5827, 2007, pp. 1039-1043. doi:10.1126/science.1141478

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.