Involvement of miR-214 and miR-375 in Malignant Features of Non-Small-Cell Lung Cancer by Down-Regulating CADM1


A tumor suppressor gene, CADM1, encoding an immunoglobulin superfamily cell adhesion molecule, is inactivated in various cancers, including non-small-cell lung cancer (NSCLC). Although promoter methylation is one of the mechanisms to suppress CADM1 expression, about half of tumors lacking CADM1 expression do not show methylation of the gene promoter. We herein investigated the possible involvement of microRNA (miRNA) in the down-regulation of CADM1. Using computational algorithms, miR-214 and miR-375 were identified as candidate miRNAs targeting CADM1. A luciferase reporter assay demonstrated that miR-214 and miR-375 repressed the promoter activity through 3’-UTR of CADM1. Quantitative RT-PCR analysis demonstrated that miR-214 and miR-375 was highly expressed in 21 (62%) and 17 cases (50%) of 34 primary NSCLCs. Notably, increased expression of miR-214 was preferentially observed in tumors with advanced pathological stages and in those lacking CADM1 expression but were not associated with the promoter methylation, suggesting that miR-214-mediated silencing would be another mechanism to suppress CADM1 expression. On the other hand, introduction of miR-214 or miR-375 into NSCLC cells decreased CADM1 protein expression. Furthermore, overexpression of miR-214 enhanced anchorage-independent growth of NSCLC cells, A549, whereas transfection of miRNA inhibitor, miR-214 or miR-375, significantly suppressed the in vitro wound healing activity of HCC827 cells. These findings suggest that overexpression of miR-214 and miR-375 could participate in the malignant features of NSCLC through down-regulating CADM1 and would provide a potential target for the treatment of a subset of NSCLC.

Share and Cite:

M. Ishimura, M. Sakurai-Yageta, T. Maruyama, T. Ando, M. Fukayama, A. Goto and Y. Murakami, "Involvement of miR-214 and miR-375 in Malignant Features of Non-Small-Cell Lung Cancer by Down-Regulating CADM1," Journal of Cancer Therapy, Vol. 3 No. 4A, 2012, pp. 379-387. doi: 10.4236/jct.2012.324050.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Kuramochi, H. Fukuhara, T. Nobukuni, T. Kanbe, T. Maruyama, H. P. Ghosh, M. Pletcher, M. Isomura, M. Onizuka, T. Kitamura, T. Sekiya, R. H. Reeves and Y. Murakami, “TSLC1 Is a Tumor-Suppressor Gene in Human Non-Small-Cell Lung Cancer,” Nature Genetics, Vol. 27, No. 4, 2001, pp. 427-430.
[2] M. Masuda, M. Yageta, H. Fukuhara, M. Kuramochi, T. Maruyama, A. Nomoto and Y. Murakami, “The Tumor Suppressor Protein TSLC1 Is Involved in Cell-Cell Adhesion,” Journal of Biological Chemistry, Vol. 277, No. 34, 2002, pp. 31014-31019.
[3] T. Fukami, H. Fukuhara, M. Kuramochi, T. Maruyama, K. Isogai, M. Sakamoto, S. Takamoto and Y. Murakami, “Promoter Methylation of the TSLC1 Gene in Advanced Lung Tumors and Various Cancer Cell Lines,” International Journal of Cancer, Vol. 107, No. 1, 2003, pp. 53-59. doi:10.1002/ijc.11348
[4] K. Uchino, A. Ito, T. Wakayama, Y. Koma, T. Okada, C. Ohbayashi, S. Iseki, Y. Kitamura, N. Tsubota, Y. Okita and M. Okada, “Clinical Implication and Prognostic Significance of the Tumor Suppressor TSLC1 Gene Detected in Adenocarcinoma of the Lung,” Cancer, Vol. 98, No. 5, 2003, pp. 1002-1007. doi:10.1002/cncr.11599
[5] A. Goto, T. Niki, L. Chi-Pin, D. Matsubara, Y. Murakami, N. Funata and M. Fukayama, “Loss of TSLC1 Expression in Lung Adenocarcinoma: Relationships with Histological Subtypes, Sex and Prognostic Significance,” Cancer Science, Vol. 96, No. 8, 2005, pp. 480-486. doi:10.1111/j.1349-7006.2005.00075.x
[6] W. Zhang, L. Zhou, S. M. Ding, H. Y. Xie, X. Xu, J. Wu, Q. X. Chen, F. Zhang, B. J. Wei, A. T. Eldin and S. S. Zheng, “Aberrant Methylation of the CADM1 Promoter Is Associated with Poor Prognosis in Hepatocellular Carcinoma Treated with Liver Transplantation,” Oncology Reports, Vol. 25, No. 4, 2011, pp. 1053-1062. doi:10.3892/or.2011.1159
[7] T. Ito, Y. Shimada, Y. Hashimoto, J. Kaganoi, T. Kan, G. Watanabe, Y. Murakami and M. Imamura, “Involvement of TSLC1 in Progression of Esophageal Squamous Cell Carcinoma,” Cancer Research, Vol. 63, No. 19, 2003, pp. 6320-6326.
[8] Y. Murakami, “Involvement of a Cell Adhesion Molecule, TSLC1/IGSF4, in Human Oncogenesis,” Cancer Science, Vol. 96, No. 9, 2005, pp. 543-552. doi: 10.1111/j.1349-7006.2005.00089.x
[9] D. P. Bartel, “MicroRNAs: Genomics, Biogenesis, Mechanism, and Function,” Cell, Vol. 116, No. 2, 2004, pp. 281-297.
[10] M. Seike, A. Goto, T. Okano, E. D. Bowman, A. J. Schetter, I. Horikawa, E. A. Mathe, J. Jen, P. Yang, H. Sugimura, A. Gemma, S. Kudoh, C. M. Croce and C. C. Harris, “MiR-21 Is an EGFR-Regulated Anti-Apoptotic Factor in Lung Cancer in Never-Smokers,” Proceedings of the National Academy of Science of the United States of America, Vol. 106, No. 29, 2009, pp. 12085-12090. doi:10.1073/pnas.0905234106
[11] F. Talotta, A. Cimmino, M. R. Matarazzo, L. Casalino, G. De Vita, M. D’Esposito, R. Di Lauro and P. Verde, “An Autoregulatory Loop Mediated by miR-21 and PDCD4 Controls the AP-1 Activity in RAS Transformation,” Oncogene, Vol. 28, No. 1, 2009, pp. 73-84. doi:10.1038/onc.2008.370
[12] S. M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K. L. Reinert, D. Brown and F. J. Slack, “RAS Is Regulated by the Let-7 micro-RNA Family,” Cell, Vol. 120, No. 5, 2005, pp. 635-647. doi:10.1016/j.cell.2005.01.014
[13] T. Ito, Y. Williams-Nate, M. Iwai, Y. Tsuboi, M. Hagiyama, A. Ito, M. Sakurai-Yageta and Y. Murakami, “Transcriptional Regulation of the CADM1 Gene by Retinoic Acid during the Neural Differentiation of Murine Embryonal Carcinoma P19 Cells,” Genes to Cells, Vol. 16, No. 7, 2011, pp. 791-802. doi:10.1111/j.1365-2443.2011.01525.x
[14] J. G. Herman, J. R. Graff, S. Myohanen, B. D. Nelkin and S. B. Baylin, “Methylation-Specific PCR: A Novel PCR Assay for Methylation Status of CpG Islands,” Proceedings of the National Academy of Science of the United States of America, Vol. 93, No. 18, 1996, pp. 9821-9826.
[15] B. P. Lewis, I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel and C. B. Burge, “Prediction of Mammalian microRNA Targets,” Cell, Vol. 115, No. 7, 2003, pp. 787-798.
[16] A. Krek, D. Grun, M. N. Poy, R. Wolf, L. Rosenberg, E. J. Epstein, P. MacMenamin, I. da Piedade, K. C. Gunsalus, M. Stoffel and N. Rajewsky, “Combinatorial microRNA Target Predictions,” Nature Genetics, Vol. 37, No. 5, 2005, pp. 495-500. doi:10.1038/ng1536
[17] S. Kikuchi, D. Yamada, T. Fukami, T. Maruyama, A. Ito, H. Asamura, Y. Matsuno, M. Onizuka and Y. Murakami. “Hypermethylation of the TSLC1/IGSF4 Promoter Is Associated with Tobacco Smoking and a Poor Prognosis in Primary Non-Small Cell Lung Cancer,” Cancer, Vol. 106, No. 8, 2006, pp. 1751-1758. doi:10.1002/cncr.21800
[18] X. Mao, E. Seidlitz, K. Ghosh, Y. Murakami and H. P. Ghosh, “The Cytoplasmic Domain Is Critical to the Tumor Suppressor Activity of TSLC1 in Non-Small Cell Lung Cancer,” Cancer Research, Vol. 63, No. 22, 2003, pp. 7979-7985.
[19] M. N. Poy, J. Hausser, M. Trajkovski, M. Braun, S. Collins, P. Rorsman, M. Zavolan and M. Stoffel, “miR- 375 Maintains Normal Pancreatic Alpha- and Beta-Cell Mass,” Proceedings of the National Academy of Science of the United States of America, Vol. 106, No. 14, 2009, pp. 5813-5818. doi:10.1073/pnas.0810550106
[20] H. Yang, W. Kong, L. He, J. J. Zhao, J. D. O’Donnell, J. Wang, R. M. Wenham, D. Coppola, P. A. Kruk, S. V. Nicosia and J. Q. Cheng, “MicroRNA Expression Profiling in Human Ovarian Cancer: miR-214 Induces Cell Survival and Cisplatin Resistance by Targeting PTEN,” Cancer Research, Vol. 68, No. 2, 2008, pp. 425-433. doi:10.1158/0008-5472.CAN-07-2488
[21] G. Yin, R. Chen, A. B. Alvero, H. H. Fu, J. Holmberg, C. Glackin, T. Rutherford and G. Mor, “TWISTing Stemness, Inflammation and Proliferation of Epithelial Ovarian Cancer Cells through MIR199A2/214,” Oncogene, Vol. 29, No. 24, 2010, pp. 3545-3553. doi:10.1038/onc.2010.111
[22] E. Penna, F. Orso, D. Cimino, E. Tenaglia, A. Lembo, E. Quaglino, L. Poliseno, A. Haimovic, S. Osella-Abate, C. De Pitta, E. Pinatel, M. B. Stadler, P. Provero, M. G. Bernengo, I. Osman and D. Taverna, “microRNA-214 Contributes to Melanoma Tumour Progression through Suppression of TFAP2C,” EMBO Journal, Vol. 30, No.10, 2011, pp. 1990-2007. doi:10.1038/emboj.2011.102
[23] P. de Souza Rocha Simonini, A. Breiling, N. Gupta, M. Malekpour, M. Youns, R. Omranipour, F. Malekpour, S. Volinia, C. M. Croce, H. Najmabadi, S. Diederichs, O. Sahin, D. Mayer, F. Lyko, J. D. Hoheisel and Y. Riazalhosseini, “Epigenetically Deregulated microRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor Alpha in Breast Cancer Cells,” Cancer Research, Vol. 70, No. 22, 2010, pp. 9175-9184. doi:10.1158/0008-5472.CAN-10-1318
[24] Y. Tsukamoto, C. Nakada, T. Noguchi, M. Tanigawa, L. T. Nguyen, T. Uchida, N. Hijiya, K. Matsuura, T. Fujioka, M. Seto and M. Moriyama, “MicroRNA-375 Is Downregulated in Gastric Carcinomas and Regulates Cell Survival by Targeting PDK1 and 14-3-3zeta,” Cancer Research, Vol. 70, No. 6, 2010, pp. 2339-2349. doi:10.1158/0008-5472.CAN-09-2777
[25] L. Ding, Y. Xu, W. Zhang, Y. Deng, M. Si, Y. Du, H. Yao, X. Liu, Y. Ke, J. Si and T. Zhou, “MiR-375 Frequently Downregulated in Gastric Cancer Inhibits Cell Proliferation by Targeting JAK2,” Cell Research, Vol. 20, No. 7, 2010, pp. 784-793. doi: 10.1038/cr.2010.79
[26] E. A. Mathe, G. H. Nguyen, E. D. Bowman, Y. Zhao, A. Budhu, A. J. Schetter, R. Braun, M. Reimers, K. Kumamoto, D. Hughes, N. K. Altorki, A. G. Casson, C. G. Liu, X. W. Wang, N. Yanaihara, N. Hagiwara, A. J. Dannenberg, M. Miyashita, C. M. Croce and C. C. Harris, “MicroRNA Expression in Squamous Cell Carcinoma and Adenocarcinoma of the Esophagus: Associations with Survival,” Clinical Cancer Research, Vol. 15, No. 19, 2009, pp. 6192-6200. doi:10.1158/1078-0432.CCR-09-1467
[27] L. Yu, N. W. Todd, L. Xing, Y. Xie, H. Zhang, Z. Liu, H. Fang, J. Zhang, R. L. Katz and F. Jiang, “Early Detection of Lung Adenocarcinoma in Sputum by a Panel of microRNA Markers,” International Journal of Cancer, Vol. 127, No. 12, 2010, pp. 2870-2878. doi:10.1002/ijc.25289

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.